Abstract

Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) based on single photons. A critical element regarding the security of QKD protocols is the photon number coherence (PNC), i.e., the phase relation between the vacuum and one-photon Fock state. To obtain single photons with the desired properties for QKD protocols, optimal excitation schemes for quantum emitters need to be selected. As emitters, we consider semiconductor quantum dots, that are known to generate on-demand single photons with high purity and indistinguishability. Exploiting two-photon excitation of a quantum dot combined with a stimulation pulse, we demonstrate the generation of high-quality single photons with a controllable degree of PNC. The main tuning knob is the pulse area giving full control from minimal to maximal PNC, while without the stimulating pulse the PNC is negligible in our setup for all pulse areas. Our approach provides a viable route toward secure communication in quantum networks.

Details

Title
Controlling the photon number coherence of solid-state quantum light sources for quantum cryptography
Author
Karli, Yusuf 1   VIAFID ORCID Logo  ; Vajner, Daniel A. 2   VIAFID ORCID Logo  ; Kappe, Florian 1 ; Hagen, Paul C. A. 3   VIAFID ORCID Logo  ; Hansen, Lena M. 4 ; Schwarz, René 1   VIAFID ORCID Logo  ; Bracht, Thomas K. 5   VIAFID ORCID Logo  ; Schimpf, Christian 6   VIAFID ORCID Logo  ; Covre da Silva, Saimon F. 6   VIAFID ORCID Logo  ; Walther, Philip 4   VIAFID ORCID Logo  ; Rastelli, Armando 6   VIAFID ORCID Logo  ; Axt, Vollrath Martin 3 ; Loredo, Juan C. 4 ; Remesh, Vikas 1   VIAFID ORCID Logo  ; Heindel, Tobias 2   VIAFID ORCID Logo  ; Reiter, Doris E. 7   VIAFID ORCID Logo  ; Weihs, Gregor 1 

 Universität Innsbruck, Institut für Experimentalphysik, Innsbruck, Austria (GRID:grid.5771.4) (ISNI:0000 0001 2151 8122) 
 Technische Universität Berlin, Institute of Solid State Physics, Berlin, Germany (GRID:grid.6734.6) (ISNI:0000 0001 2292 8254) 
 Universität Bayreuth, Theoretische Physik III, Bayreuth, Germany (GRID:grid.7384.8) (ISNI:0000 0004 0467 6972) 
 University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria (GRID:grid.499369.8) (ISNI:0000 0004 7671 3509); University of Vienna, Christian Doppler Laboratory for Photonic Quantum Computer, Faculty of Physics, Vienna, Austria (GRID:grid.10420.37) (ISNI:0000 0001 2286 1424) 
 TU Dortmund, Condensed Matter Theory, Department of Physics, Dortmund, Germany (GRID:grid.5675.1) (ISNI:0000 0001 0416 9637); Universität Münster, Institut für Festkörpertheorie, Münster, Germany (GRID:grid.5949.1) (ISNI:0000 0001 2172 9288) 
 Johannes Kepler University Linz, Institute of Semiconductor and Solid State Physics, Linz, Austria (GRID:grid.9970.7) (ISNI:0000 0001 1941 5140) 
 TU Dortmund, Condensed Matter Theory, Department of Physics, Dortmund, Germany (GRID:grid.5675.1) (ISNI:0000 0001 0416 9637) 
Pages
17
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20566387
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918848243
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.