Abstract
Background
The Apiaceae family is among the most significant plant families because it contains both beneficial and poisonous plants. Due to their morphological similarity, these harmless and lethal species are frequently confounded. Cumin, fennel, and anise are the most prevalent members of the family Apiaceae in Egypt. Members of this family are routinely used as medical surrogates, so it is crucial that they are correctly identified and distinguished. DNA barcoding is a molecular technique used for identifying species and reconstructing phylogenetic trees.
Results
Six plants from this family were chosen for this study due to their medicinal importance, and four DNA barcoding loci (rbcL, matK, trnH-psaA, and ITS) were used to identify them. The amplicons were sequenced, and the comparative analysis was conducted between the sequences evaluated and the most significant Blast results. The DNA rbcL, trnH-psaA, and ITS barcodes exhibited similar amplicons among the six species of Apiaceae, while the trnH-psaA barcode exhibited different amplicons among the Apiaceae. Maximum likelihood approach was used to calculate the genetic distance between the sex species of Apiaceae. The most significant findings were that the one from four DNA barcoding was able to distinguish between distinct species and confirm their evolutionary belonging to this family.
Conclusions
The current study concludes that trnH-psbA and ITS DNA identifiers can be used to accurately identify, differentiate, and record Apiaceae species, while the rbcl DNA barcode appears to have fallen short of its intended purpose. So, the data that come from DNA barcodes could be used for the biodiversity assessment and the similarities between hazardous and commercial plants to resolve some of these deficiencies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Younis, Rania A. A. 1 ; Al-Kordy, Magdy A. 3 ; El-Domyati, Fotouh M. 1 ; Moghazee, Mona M. 1
1 Ain Shams University, Genetic Department, Faculty of Agriculture, Cairo, Egypt (GRID:grid.7269.a) (ISNI:0000 0004 0621 1570)
2 Beni-Suef University, Genetics Department, Faculty of Agriculture, Beni Suef, Egypt (GRID:grid.411662.6) (ISNI:0000 0004 0412 4932)
3 Biotechnology Research Institute, National Research Centre, Genetics and Cytology Department, El Dokki, Giza, Egypt (GRID:grid.419725.c) (ISNI:0000 0001 2151 8157)





