Abstract
Unmanned aerial vehicles (UAVs) are excellent tools with extensive demand. During the last phase of landing, they require additional support to that of GPS. This can be achieved through the UAV’s perception system based on its on-board camera and intelligence, and with which decisions can be made as to how to land on a platform (target). A cognitive computation approach is proposed to recognize this target that has been specifically designed to translate human reasoning into computational procedures by computing two probabilities of detection which are combined considering the fuzzy set theory for proper decision-making. The platform design is based on: (1) spectral information in the visible range which are uncommon colors in the UAV’s operating environments (indoors and outdoors) and (2) specific figures in the foreground, which allow partial perception of each figure. We exploit color image properties from specific-colored figures embedded on the platform and which are identified by applying image processing and pattern recognition techniques, including Euclidean Distance Smart Geometric Analysis, to identify the platform in a very efficient and reliable manner. The test strategy uses 800 images captured with a smartphone onboard a quad-rotor UAV. The results verify the proposed method outperforms existing strategies, especially those that do not use color information. Platform recognition is also possible even with only a partial view of the target, due to image capture under adverse conditions. This demonstrates the effectiveness and robustness of the proposed cognitive computing-based perception system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Pajares, G. 2 ; Dormido, S. 1 1 Universidad Nacional de Educación a Distancia, Department of Computer Science and Automatic Control, Higher Technical School of Computer Science Engineering ETSII (Escuela Técnica Superior Ingeniería Informática), Madrid, Spain (GRID:grid.10702.34) (ISNI:0000 0001 2308 8920)
2 Instituto del Conocimiento (Knowledge Institute), Universidad Complutense, Madrid, Spain (GRID:grid.4795.f) (ISNI:0000 0001 2157 7667)





