Abstract

Present paper examines the boundary-layer flow of magnetic nanofluid over a radiative plate moving in a uniform parallel free stream. Water is considered as the base fluid which is being filled with magnetite-Fe3O4 nanoparticles. Energy balance equation is formulated with non-linear radiation heat flux. Mathematical analysis is carried out through the famous Tiwari and Das model. Similarity approach is utilized to construct self-similar form of the governing differential system. Numerical computations are made through standard shooting method. Ferrofluid velocity is predicted to enhance upon increasing the nanoparticle volume fraction which contradicts with the available literature for non-magnetic nanofluids. It is found that Fe3O4-water ferrofluid has superior heat transfer coefficient than pure water. Results reveal that consideration of magnetic nanoparticles in water leads to better absorption of incident solar radiations. The well-known Blasius and Sakiadis flows are also explicitly analyzed from the present model.

Details

Title
Consequences of convection-radiation interaction for magnetite-water nanofluid flow due to a moving plate
Author
Ammar Mushtaq; Junaid Ahmad Khan; Meraj Mustafa; Tasawar Hayat; Alsaedi, Ahmed
Pages
443-451
Section
Original scientific papers
Publication year
2018
Publication date
2018
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429088428
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.