Content area

Abstract

Reducing test inputs that trigger bugs is crucial for efficient debugging. Delta debugging is the most popular approach for this purpose. When test inputs need to conform to certain specifications, existing delta debugging practice encounters a validity problem: it blindly applies reduction rules, producing a large number of invalid test inputs that do not satisfy the required specifications. This overall diminishing effectiveness and efficiency becomes even more pronounced when the specifications extend beyond syntactical structures. Our key insight is that we should leverage input generators, which are aware of these specifications, to generate valid reduced inputs, rather than straightforwardly performing reduction on test inputs. In this paper, we propose a generator-based delta debugging method, namely GReduce, which derives validity-preserving reducers. Specifically, given a generator and its execution, demonstrating how the bug-inducing test input is generated, GReduce searches for other executions on the generator that yield reduced, valid test inputs. The evaluation results on five benchmarks (i.e., graphs, DL models, JavaScript programs, SymPy, and algebraic data types) show that GReduce substantially outperforms state-of-the-art syntax-based reducers including Perses and T-PDD, and also outperforms QuickCheck, SmartCheck, as well as the state-of-the-art choice-sequence-based reducer Hypothesis, demonstrating the effectiveness, efficiency, and versatility of GReduce.

Details

1009240
Identifier / keyword
Title
Validity-Preserving Delta Debugging via Generator Trace Reduction
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 4, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-05
Milestone dates
2024-02-07 (Submission v1); 2024-09-18 (Submission v2); 2024-12-04 (Submission v3)
Publication history
 
 
   First posting date
05 Dec 2024
ProQuest document ID
2923560536
Document URL
https://www.proquest.com/working-papers/validity-preserving-delta-debugging-via-generator/docview/2923560536/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-06
Database
ProQuest One Academic