Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As energy supply units, lithium-ion batteries have been widely used in the electric vehicle industry. However, the safety of lithium-ion batteries remains a significant factor limiting their development. To achieve rapid fault diagnosis of lithium-ion batteries, this paper presents a comprehensive fault diagnosis process. Firstly, an interleaved voltage sensor topology structure is utilized to acquire battery voltage data. An improved complete ensemble empirical mode decomposition with adaptive noise method is introduced to process data. Then, the reconstructed voltage data sequence is used to eliminate the influence of noise. A fault location is performed using dichotomy correlation coefficient and time window correlation coefficient. Afterwards, principal component analysis is used to select the principal components with high contribution rate as classification features. The gray wolf optimization algorithm is used to find the parameters of the least squares support vector machine, constructing an optimal classifier for fault classification. A fault experiment platform is established to realize the physical triggering of faults such as external short circuit, internal circuit, and connection of experimental battery packs. Finally, the accuracy and reliability of the method are verified by the results of fault localization and fault type determination.

Details

Title
Multi-Fault Diagnosis of Electric Vehicle Power Battery Based on Double Fault Window Location and Fast Classification
Author
Shen, Xiaowei; Lun, Shuxian; Li, Ming
First page
612
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2923916588
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.