Content area
Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3–9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, β-damascenone, α-ionone, β-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.
Details
Beverages;
Food;
Fingerprinting;
Ethyl hexanoate;
Flavors;
Volatile organic compounds--VOCs;
Tea;
Black tea;
Hexanoic acid;
Fermentation;
Food industry;
Microorganisms;
Bioactive compounds;
Benzaldehyde;
Leaves;
Linalool;
Seeds;
Market potential;
Sensory evaluation;
Coffee;
Acetic acid;
Hexanal;
Acceptance tests;
Salicylic acid;
Aroma;
Sugar;
Damascenone;
Consumers;
Octanoic acid;
Fermented food;
Isopentyl alcohol;
Ionone;
Organic compounds;
Yeast
; Cunha, Sara C 2
; Ferreira, Isabel MPLVO 2
; Morgado, Jéssika 3 ; Melo, Lauro 4
; DePaula, Juliana 3
; Miguel, Marco Antonio L 5 ; Farah, Adriana 3
1 Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil;
2 LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal;
3 Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil;
4 Laboratório de Análise Sensorial e Estudos do Consumidor (LASEC), Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, CT, Bl. E, Rio de Janeiro 21941-909, Brazil;
5 Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil