Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The zero-velocity update (ZUPT) algorithm is a pivotal advancement in pedestrian navigation accuracy, utilizing foot-mounted inertial sensors. Its key issue hinges on accurately identifying periods of zero-velocity during human movement. This paper introduces an innovative adaptive sliding window technique, leveraging the Fourier Transform to precisely isolate the pedestrian’s gait frequency from spectral data. Building on this, the algorithm adaptively adjusts the zero-velocity detection threshold in accordance with the identified gait frequency. This adaptation significantly refines the accuracy in detecting zero-velocity intervals. Experimental evaluations reveal that this method outperforms traditional fixed-threshold approaches by enhancing precision and minimizing false positives. Experiments on single-step estimation show the adaptability of the algorithm to motion states such as slow, fast, and running. Additionally, the paper demonstrates pedestrian trajectory localization experiments under a variety of walking conditions. These tests confirm that the proposed method substantially improves the performance of the ZUPT algorithm, highlighting its potential for pedestrian navigation systems.

Details

Title
A Novel Zero-Velocity Interval Detection Algorithm for a Pedestrian Navigation System with Foot-Mounted Inertial Sensors
Author
Wang, Xiaotao  VIAFID ORCID Logo  ; Li, Jiacheng; Xu, Guangfei; Wang, Xingyu
First page
838
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2924005235
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.