It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recently, segmentation-based approaches have been proposed to tackle arbitrary-shaped text detection. The trade-off between speed and accuracy is still a challenge that hinders its deployment in practical applications. Previous methods adopt complex pipelines to improve accuracy while ignoring inference speed. Moreover, the performance of most efficient scene text detectors often suffers from weak feature extraction when equipping lightweight networks. In this paper, we propose a novel distillation method for efficient and accurate arbitrary-shaped text detection, termed kernel-mask knowledge distillation. Our approach equips a low computational-cost visual transformer module (VTM) and a feature adaptation layer to make full use of feature-based and response-based knowledge in distillation. More specifically, first, the text features are obtained by aggregating the multi-level information extracted in the respective backbones of the teacher and student networks. Second, the text features are respectively sent to the VTM to enhance the feature representation ability. Then, we distill the feature-based and response-based kernel knowledge of the teacher network to obtain an efficient and accurate arbitrary-shaped text detection model. Extensive experiments on publicly available datasets demonstrate the state-of-the-art performance of our method. It is worth noting that our method can achieve a competitive F-measure of 86.92% at 34.5 FPS on Total-text. Code is available at https://github.com/giganticpower/KKDnet.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Fuzhou University, Department of Physics and Information Engineering, Fuzhou, China (GRID:grid.411604.6) (ISNI:0000 0001 0130 6528)
2 Monash University, School of Engineering, Clayton, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857)
3 Xiamen University, Department of Computer Science and Technology, Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233)
4 Huahui Intelligent Building Company, Fuzhou, China (GRID:grid.12955.3a)