Abstract

Supercritical airfoils are critical components in the design of commercial wide-body aircraft wings due to their ability to enhance aerodynamic performance in transonic flow regimes. However, traditional design methods for supercritical airfoils can be time-consuming and require significant manual effort, not to mention the high cost associated with computational fluid dynamics analysis. To address these challenges, this paper introduces a highly automated approach for supercritical airfoil design, called Evolutionary Generative Design (EvoGD). The EvoGD approach is based on the framework of Evolutionary Computation and employs a series of sophisticated data-driven generative models incorporated with physical information to iteratively refine initial airfoil shapes, resulting in improved aerodynamic performances and reduced constraint violations. Moreover, to speed up the evaluation of the generated airfoils, a series of accurate and efficient data-driven predictors are utilized. The efficacy of the EvoGD approach was demonstrated through experiments on a dataset of 501 supercritical airfoils, including one baseline design and 500 randomly perturbed airfoils. On average, the generated airfoils showed improved performance in terms of buffet lift coefficient, cruise lift-to-drag ratio, and thickness by 5%, 4%, and 1%, respectively. The best generated airfoil outperformed the baseline design in terms of critical buffet lift coefficient and cruise lift-to-drag ratio by 7.1% and 6.4%, respectively. The entire design process was completed in less than an hour on a personal computer, highlighting the high efficiency and scalability of the EvoGD approach.

Details

Title
Evolutionary generative design of supercritical airfoils: an automated approach driven by small data
Author
Sun, Kebin 1 ; Wang, Weituo 1 ; Cheng, Ran 1   VIAFID ORCID Logo  ; Liang, Yu 2 ; Xie, Hairun 3 ; Wang, Jing 3 ; Zhang, Miao 3 

 Southern University of Science and Technology, Department of Computer Science and Engineering, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
 Beihang University, Institute of Unmanned System, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211) 
 Shanghai Aircraft Design and Research Institute, Shanghai, China (GRID:grid.464241.1) (ISNI:0000 0004 1786 5481) 
Pages
1167-1183
Publication year
2024
Publication date
Feb 2024
Publisher
Springer Nature B.V.
ISSN
21994536
e-ISSN
21986053
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2924576513
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.