Abstract

The detection and study of vibrations play a fundamental role in the monitoring and safety of engineering systems. This is especially true in the aerospace sector, where the operating environment is often hostile, and the constraints on weights and dimensions are very tight. For these reasons, the research and application of sensors based on optical signal transmission are becoming increasingly important. The opportunity to implement distributed measurements along a single optical fiber, the small size and weight, and the high resistance to electromagnetic interference make this technology an ideal candidate for the development of next-generation aerial platforms. In this paper, the authors focus on designing and developing a novel sensor that employs Fiber Bragg Grating (FBG) for vibration detection. Their primary aim is to explore the potential and constraints of this technology and build an initial prototype for testing purposes. Additionally, the project enabled the authors to experiment with rapid prototyping techniques that rely on 3D printing and additive manufacturing. The impact of various design choices, such as materials, geometry, and manufacturing, on the demonstrator sensitivity was explored by analysing the problem mathematically. A Matlab script was developed to estimate dimensions, weights, and dynamic performances, and modelling FEM was used for validation.

Details

Title
Rapid prototyping of FBG-based optical sensors for vibration analysis of mechatronic systems
Author
Matteo D L Dalla Vedova 1 ; Quattrocchi, Gaetano 1 ; Aimasso, Alessandro 1 ; Marotta, Antonio 1 ; Ferro, Carlo G 1 ; Maggiore, Paolo 1 

 Dept. of Mechanical and Aerospace Engineering, Politecnico di Torino , Torino , Italy 
First page
012004
Publication year
2024
Publication date
Feb 2024
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2925584653
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.