It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Kidney clear cell carcinoma (KIRC) is the most common subtype of renal cell carcinoma. Peroxisomes play a role in the regulation of tumorigenesis and cancer progression, yet the prognostic significance of peroxisome-related genes (PRGs) remains rarely studied. The study aimed to establish a novel prognostic risk model and identify potential biomarkers in KIRC.
Methods
The significant prognostic PRGs were screened through differential and Cox regression analyses, and LASSO Cox regression analysis was performed to establish a prognostic risk model in the training cohort, which was validated internally in the testing and entire cohorts, and further assessed in the GSE22541 cohort. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to explore the function and pathway differences between the high-risk and low-risk groups. The relationship between risk score and immune cell infiltration levels was evaluated in the CIBERSORT, ESTIMATE and TIMER databases. Finally, potential biomarkers were identified and validated from model genes, using immunohistochemistry.
Results
Fourteen significant prognostic PRGs were identified using multiple analyses, and 9 genes (ABCD1, ACAD11, ACAT1, AGXT, DAO, EPHX2, FNDC5, HAO1, and HNGCLL1) were obtained to establish a prognostic model via LASSO Cox regression analysis. Combining the risk score with clinical factors to construct a nomogram, which provided support for personalized treatment protocols for KIRC patients. GO and KEGG analyses highlighted associations with substance metabolism, transport, and the PPAR signaling pathways. Tumor immune infiltration indicated immune suppression in the high-risk group, accompanied by higher tumor purity and the expression of 9 model genes was positively correlated with the level of immune cell infiltration. ACAT1 has superior prognostic capabilities in predicting the outcomes of KIRC patients.
Conclusions
The peroxisome-related prognostic risk model could better predict prognosis in KIRC patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer