It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
This study examined the effect of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway on chronic obstructive pulmonary disease (COPD) and the potential molecular mechanism.
Methods
A COPD mouse model was established by cigarette smoke exposure and administered with either ML385 or dimethyl fumarate (DMF). Airway resistance of mice was detected. IL-1β and IL-6 levels in mice alveolar lavage fluid were examined by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining and immunohistochemical of lung tissues were utilized to detect lung injury and NLRP3 expression. DMF was used to treat COPD cell model constructed by exposing normal human bronchial epithelial (NHBE) cells to cigarette smoke extract. NHBE cells were transfected by NLRP3-expression vectors. Expression of proteins was detected by Western blot.
Results
COPD mice showed the enhanced airway resistance, the inactivated Nrf2/HO-1 pathway and the overexpressed NLRP3, Caspase-1 and GSDMD-N proteins in lung tissues, and the increased IL-1β and IL-6 levels in alveolar lavage fluid. ML385 treatment augmented these indicators and lung injury in COPD mice. However, DMF intervention attenuated these indicators and lung injury in COPD mice. Nrf2/HO-1 pathway inactivation and overexpression of NLRP3, Caspase-1 and GSDMD-N proteins were observed in COPD cells. DMF intervention activated Nrf2/HO-1 pathway and down-regulated NLRP3, Caspase-1 and GSDMD-N proteins in COPD cells. However, NLRP3 overexpression abolished the effect of DMF on COPD cells.
Conclusion
Nrf2/HO-1 pathway activation may alleviate inflammation in COPD by suppressing the NLRP3-related pyroptosis. Activating the Nrf2/HO-1 pathway may be an effective method to treat COPD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer