Abstract
Sodium-ion batteries are considered one of the perspective alternatives to lithium-ion batteries due to their affordability and plentiful supply of sodium. However, traditional sodium-ion batteries that use organic electrolytes pose a threat to public safety and the ecological environment. As a result, aqueous electrolytes with high safety and cost-effectiveness are becoming more popular. Unfortunately, typically aqueous electrolytes face limitations in ionic conductivity and have relatively high freezing points, which hinder their ability to function at extremely low temperatures. These issues can be resolved with an easy-to-use method called electrolyte additive. The research on electrolyte additives for subzero-temperature aqueous sodium-ion batteries has not been systematically reviewed at present. This review aims to provide a comprehensive summary of the electrolyte additives for subzero-temperature aqueous sodium-ion batteries. Furthermore, the potential development paths of electrolyte additives to promote the advancement of electrochemical energy storage are also explored. Highlights • Challenges on current subzero-temperature aqueous sodium-ion batteries are described. • Three strategies for aqueous electrolyte additives are summarized. • Potential development directions for future aqueous electrolyte additives are outlined.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Xi’an Jiaotong University, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243)
2 Yanshan University, HeBei Key Laboratory of Applied Chemistry, Qinhuangdao, People’s Republic of China (GRID:grid.413012.5) (ISNI:0000 0000 8954 0417)




