Content area

Abstract

We study the problem of characterizing optimal learning algorithms for playing repeated games against an adversary with unknown payoffs. In this problem, the first player (called the learner) commits to a learning algorithm against a second player (called the optimizer), and the optimizer best-responds by choosing the optimal dynamic strategy for their (unknown but well-defined) payoff. Classic learning algorithms (such as no-regret algorithms) provide some counterfactual guarantees for the learner, but might perform much more poorly than other learning algorithms against particular optimizer payoffs. In this paper, we introduce the notion of asymptotically Pareto-optimal learning algorithms. Intuitively, if a learning algorithm is Pareto-optimal, then there is no other algorithm which performs asymptotically at least as well against all optimizers and performs strictly better (by at least \(\Omega(T)\)) against some optimizer. We show that well-known no-regret algorithms such as Multiplicative Weights and Follow The Regularized Leader are Pareto-dominated. However, while no-regret is not enough to ensure Pareto-optimality, we show that a strictly stronger property, no-swap-regret, is a sufficient condition for Pareto-optimality. Proving these results requires us to address various technical challenges specific to repeated play, including the fact that there is no simple characterization of how optimizers who are rational in the long-term best-respond against a learning algorithm over multiple rounds of play. To address this, we introduce the idea of the asymptotic menu of a learning algorithm: the convex closure of all correlated distributions over strategy profiles that are asymptotically implementable by an adversary. We show that all no-swap-regret algorithms share the same asymptotic menu, implying that all no-swap-regret algorithms are ``strategically equivalent''.

Details

1009240
Title
Pareto-Optimal Algorithms for Learning in Games
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Feb 14, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-02-16
Milestone dates
2024-02-14 (Submission v1)
Publication history
 
 
   First posting date
16 Feb 2024
ProQuest document ID
2927739566
Document URL
https://www.proquest.com/working-papers/pareto-optimal-algorithms-learning-games/docview/2927739566/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-02-17
Database
ProQuest One Academic