Abstract

We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.

Profiling antibody responses to vast antigenic spaces has been challenging using programmable phage display (PhIP-Seq). Here, authors develop a methodology for compressing large proteomic spaces and have discovered human antibodies targeting gut bacteria-infecting phages.

Details

Title
Efficient encoding of large antigenic spaces by epitope prioritization with Dolphyn
Author
Liebhoff, Anna-Maria 1   VIAFID ORCID Logo  ; Venkataraman, Thiagarajan 2 ; Morgenlander, William R. 2   VIAFID ORCID Logo  ; Na, Miso 2   VIAFID ORCID Logo  ; Kula, Tomasz 3   VIAFID ORCID Logo  ; Waugh, Kathleen 4 ; Morrison, Charles 5 ; Rewers, Marian 4   VIAFID ORCID Logo  ; Longman, Randy 6 ; Round, June 7   VIAFID ORCID Logo  ; Elledge, Stephen 3   VIAFID ORCID Logo  ; Ruczinski, Ingo 8 ; Langmead, Ben 9 ; Larman, H. Benjamin 2   VIAFID ORCID Logo 

 Johns Hopkins University, Department of Computer Science, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311); Johns Hopkins University, Institute of Cell Engineering, Division of Immunology, Department of Pathology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Johns Hopkins University, Institute of Cell Engineering, Division of Immunology, Department of Pathology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Harvard Medical School, Department of Genetics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Howard Hughes Medical Institute, Brigham and Women’s Hospital, Division of Genetics, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294) 
 University of Colorado Denver, Barbara Davis Center for Diabetes, Aurora, USA (GRID:grid.241116.1) (ISNI:0000 0001 0790 3411) 
 Clinical and Epidemiologic Sciences, FHI 360, Behavioral, Durham, USA (GRID:grid.245835.d) (ISNI:0000 0001 0300 5112) 
 Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, Jill Roberts Institute for Research in IBD, New York, USA (GRID:grid.471410.7) (ISNI:0000 0001 2179 7643) 
 University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, USA (GRID:grid.223827.e) (ISNI:0000 0001 2193 0096) 
 Johns Hopkins University, Department of Biostatistics, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Johns Hopkins University, Department of Computer Science, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
Pages
1577
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2929306651
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.