Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

CANYVAL-C is a formation-flying mission that demonstrates a coronagraph utilizing two CubeSats. The coronagraph is a space telescope that blocks sunlight to examine the overcast regions around the sun. It is composed of optical and occult segments. Two spacecraft were aligned with respect to an inertial system to configure a virtual telescope using inertial alignment hold technology. The relative orbit control scenario for this mission involves rendezvous, differential air drag control, and inertial alignment holding. Orbit control algorithms and simple strategies that can be automatically constructed onboard have also been developed. For each maneuver, the control performance under the errors from navigation, attitude determination and control, and propulsion systems were assessed via Monte Carlo simulation, taking into account the hardware specifications and operations. In addition to the algorithm and strategy of this mission, the relative orbit control scenario was evaluated for its practicability using Monte Carlo simulations. The feasibility of this mission is ensured by a statistical analysis of the prospect of its success during its operation.

Details

Title
Relative Orbit Control Algorithms and Scenarios for the Inertial Alignment Hold Demonstration Mission by CubeSat Formation Flying
Author
Jeon, Soobin 1   VIAFID ORCID Logo  ; Sang-Young, Park 1   VIAFID ORCID Logo  ; Geuk-Nam Kim 2   VIAFID ORCID Logo 

 Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University, Seoul 03722, Republic of Korea; [email protected] 
 NARA Space, Busan 49111, Republic of Korea; [email protected] 
First page
135
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930470006
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.