Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Breast cancer (BC) affects millions of women worldwide, causing over 500,000 deaths annually. It is the leading cause of cancer mortality in women, with 70% of deaths occurring in developing countries. Elastography, which evaluates tissue stiffness, is a promising real-time minimally invasive technique for BC diagnosis. This study assessed strain elastography (SE) and the fat-to-lesion (F/L) index for BC diagnosis. This prospective study included 216 women who underwent SE, ultrasound, mammography, and breast biopsy (108 malignant, 108 benign). Three expert radiologists performed imaging and biopsies. Mean F/L index was 3.70 ± 2.57 for benign biopsies and 18.10 ± 17.01 for malignant. We developed two predictive models: a logistic regression model with AUC 0.893, 79.63% sensitivity, 87.62% specificity, 86.9% positive predictive value (+PV), and 80.7% negative predictive value (−PV); and a neural network with AUC 0.902, 80.56% sensitivity, 88.57% specificity, 87.9% +PV, and 81.6% −PV. The optimal Youden F/L index cutoff was >5.76, with 84.26% sensitivity and specificity. The F/L index positively correlated with BI-RADS (Spearman’s r = 0.073, p < 0.001) and differed among molecular subtypes (Kruskal-Wallis, p = 0.002). SE complements mammography for BC diagnosis. With adequate predictive capacity, SE is fast, minimally invasive, and useful when mammography is contraindicated.

Details

Title
Strain Elastography Fat-to-Lesion Index Is Associated with Mammography BI-RADS Grading, Biopsy, and Molecular Phenotype in Breast Cancer
Author
José Alfonso Cruz-Ramos 1   VIAFID ORCID Logo  ; Trapero-Corona, Mijaíl Irak 2 ; Valencia-Hernández, Ingrid Aurora 3 ; Gómez-Vargas, Luz Amparo 2 ; Toranzo-Delgado, María Teresa 2 ; Cano-Magaña, Karla Raquel 2 ; De la Mora-Jiménez, Emmanuel 2 ; Gabriela del Carmen López-Armas 4   VIAFID ORCID Logo 

 Departamento de Clínicas Médicas, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara; Guadalajara 44340, Mexico; Subdirección de Desarrollo Institucional, Instituto Jalisciense de Cancerología, Guadalajara 44280, Mexico 
 Subdirección de Desarrollo Institucional, Instituto Jalisciense de Cancerología, Guadalajara 44280, Mexico 
 Departamento de Ciencias Computacionales, Instituto Nacional de Astrofísica Óptica y Electrónica, San Andrés Cholula 72840, Mexico 
 Laboratorio de Biomédica-Mecatrónica, Subdirección de Investigación y Extensión, Centro de Enseñanza Técnica Industrial Plantel Colomos, Guadalajara 44638, Mexico 
First page
94
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930606910
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.