Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semantic segmentation of human images is a research hotspot in the field of computer vision. At present, the semantic segmentation models based on U-net generally lack the ability to capture the spatial information of images. At the same time, semantic incompatibility exists because the feature maps of encoder and decoder are directly connected in the skip connection stage. In addition, in low light scenes such as at night, it is easy for false segmentation and segmentation accuracy to appear. To solve the above problems, a portrait semantic segmentation method based on dual-modal information complementarity is proposed. The encoder adopts a double branch structure, and uses a SK-ASSP module that can adaptively adjust the convolution weights of different receptor fields to extract features in RGB and gray image modes respectively, and carries out cross-modal information complementarity and feature fusion. A hybrid attention mechanism is used in the jump connection phase to capture both the channel and coordinate context information of the image. Experiments on human matting dataset show that the PA and MIoU coefficients of this algorithm model reach 96.58% and 94.48% respectively, which is better than U-net benchmark model and other mainstream semantic segmentation models.

Details

Title
Portrait Semantic Segmentation Method Based on Dual Modal Information Complementarity
Author
Feng, Guang 1 ; Tang, Chong 2 

 College of Automation, Guangdong University of Technology, Guangzhou 511400, China; [email protected] 
 College of Computer, Guangdong University of Technology, Guangzhou 511400, China 
First page
1439
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930934249
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.