Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Resistive gas sensors, which are widely used for the detection of various toxic gases and vapors, can be fabricated in planar and tubular configurations by the deposition of a semiconducting sensing layer over an insulating substrate. However, their deposition parameters are not often optimized to obtain the highest sensing results. Here, we have investigated the effect of deposition variables on the H2 gas sensing performance of commercially available SnO2 particles on tubular alumina substrate. Utilizing a tubular alumina substrate equipped with gold electrodes, we varied the number of deposited layers, rotational speed of the substrate, and number of rotations of the substrate on the output of the deposited sensor in terms of response to H2 gas. Additionally, the effect of annealing temperatures (400, 500, 600, and 700 °C for 1 h) was investigated. According to our findings, the optimal conditions for sensor fabrication to achieve the best performance were the application of one layer of the sensing material on the sensor with ten rotations and a rotation speed of 7 rpm. In addition, annealing at a lower temperature (400 °C) resulted in better sensor performance. The optimized sensor displayed a high response of ~12 to 500 ppm at 300 °C. This study demonstrates the importance of optimization of deposition parameters on tubular substrates to achieve the best gas sensing performance, which should be considered when preparing gas sensors.

Details

Title
Optimization of Deposition Parameters of SnO2 Particles on Tubular Alumina Substrate for H2 Gas Sensing
Author
Lee, Myoung Hoon 1 ; Mirzaei, Ali 2   VIAFID ORCID Logo  ; Hyoun Woo Kim 3 ; Kim, Sang Sub 1   VIAFID ORCID Logo 

 Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; [email protected] 
 Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; [email protected] 
 Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; [email protected] 
First page
1567
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930934728
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.