Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A process for the deoxydehydration (DODH) of glycerol to allyl alcohol in 2-hexanol as solvent was modelled with Aspen Plus. Experimental results for the DODH reaction, the liquid vapour equilibria and the catalytic hydrogenation were employed for the development of the model. The whole process consists of four subsystems: allyl alcohol production (S1), solvent recovery (S2), allyl alcohol purification (S3) and solvent regeneration (S4). Based on the results of the process model, allyl alcohol with 96% yield and a purity of 99.99% with product loss of only 0.2% was obtained. The optimisation of the energy consumption through an integrated heat exchange network resulted in a net primary energy input of 863.5 kW, which corresponded to a carbon footprint of 1.89 kgCO2/kgAllylOH.

Details

Title
Simulation Process for Allyl Alcohol Production via Deoxydehydration of Glycerol
Author
Assaad, Ghadir; Karen Silva Vargas; Katryniok, Benjamin; Araque, Marcia
First page
10
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23057084
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930937013
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.