Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process.

Details

Title
Processes Controlling the Contractile Ring during Cytokinesis in Fission Yeast, Including the Role of ESCRT Proteins
Author
Rezig, Imane M 1 ; Yaduma, Wandiahyel G 2 ; McInerny, Christopher J 1   VIAFID ORCID Logo 

 School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK; [email protected] 
 School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK; [email protected]; Department of Chemistry, School of Sciences, Adamawa State College of Education, Hong 640001, Adamawa State, Nigeria 
First page
154
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2309608X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930956213
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.