It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To address the current difficulties in fire detection algorithms, including inadequate feature extraction, excessive computational complexity, limited deployment on devices with limited resources, missed detections, inaccurate detections, and low accuracy, we developed a highly accurate algorithm named YOLOFM. We utilized LabelImg software to manually label a dataset containing 18644 images, named FM-VOC Dataset18644. In addition, we constructed a FocalNext network, which utilized the FocalNextBlock module from the CFnet network. This improves the integration of multi-scale information and reduces model parameters. We also proposed QAHARep-FPN, an FPN network that integrates the structure of quantization awareness and hardware awareness. This design effectively reduces redundant calculations of the model. A brand-new compression decoupled head, named NADH, was also created to enhance the correlation between the decoupling head structure and the calculation logic of the loss function. Instead of using the CIoU loss for bounding box regression, we proposed a Focal-SIoU loss. This promotes the swift convergence of the network and enhances the precision of the regression. The experimental results showed that YOLOFM improved the baseline network’s accuracy, recall, F1, mAP50, and mAP50-95 by 3.1%, 3.9%, 3.0%, 2.2%, and 7.9%, respectively. It achieves an equilibrium that combines performance and speed, resulting in a more dependable and accurate solution for detection jobs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Zhengzhou University of Light Industry, College of Building Environment Engineering, Zhengzhou, China (GRID:grid.413080.e) (ISNI:0000 0001 0476 2801)