Content area

Abstract

Accurate precipitation nowcasting is crucial for applications such as flood prediction, disaster management, agriculture optimization, and transportation management. While many studies have approached this task using sequence-to-sequence models, most focus on single regions, ignoring correlations between disjoint areas. We reformulate precipitation nowcasting as a spatiotemporal graph sequence problem. Specifically, we propose Graph Dual-stream Convolutional Attention Fusion, a novel extension of the graph attention network. Our model's dual-stream design employs distinct attention mechanisms for spatial and temporal interactions, capturing their unique dynamics. A gated fusion module integrates both streams, leveraging spatial and temporal information for improved predictive accuracy. Additionally, our framework enhances graph attention by directly processing three-dimensional tensors within graph nodes, removing the need for reshaping. This capability enables handling complex, high-dimensional data and exploiting higher-order correlations between data dimensions. Depthwise-separable convolutions are also incorporated to refine local feature extraction and efficiently manage high-dimensional inputs. We evaluate our model using seven years of precipitation data from Copernicus Climate Change Services, covering Europe and neighboring regions. Experimental results demonstrate superior performance of our approach compared to other models. Moreover, visualizations of seasonal spatial and temporal attention scores provide insights into the most significant connections between regions and time steps.

Details

1009240
Title
Graph Dual-stream Convolutional Attention Fusion for Precipitation Nowcasting
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 8, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-10
Milestone dates
2024-01-15 (Submission v1); 2024-02-26 (Submission v2); 2024-12-08 (Submission v3)
Publication history
 
 
   First posting date
10 Dec 2024
ProQuest document ID
2932303428
Document URL
https://www.proquest.com/working-papers/graph-dual-stream-convolutional-attention-fusion/docview/2932303428/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-11
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic