Abstract

Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton’s multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.

Understanding excitonic optical excitations is integral to improving optoelectronic and photovoltaic semiconductor devices. Here, Bennecke et al. use photoemission exciton tomography to unravel the multiorbital electron and hole contributions of entangled excitonic states in the prototypical organic semiconductor C60.

Details

Title
Disentangling the multiorbital contributions of excitons by photoemission exciton tomography
Author
Bennecke, Wiebke 1   VIAFID ORCID Logo  ; Windischbacher, Andreas 2   VIAFID ORCID Logo  ; Schmitt, David 1 ; Bange, Jan Philipp 1   VIAFID ORCID Logo  ; Hemm, Ralf 3 ; Kern, Christian S. 2   VIAFID ORCID Logo  ; D’Avino, Gabriele 4   VIAFID ORCID Logo  ; Blase, Xavier 4   VIAFID ORCID Logo  ; Steil, Daniel 1   VIAFID ORCID Logo  ; Steil, Sabine 1 ; Aeschlimann, Martin 3   VIAFID ORCID Logo  ; Stadtmüller, Benjamin 3   VIAFID ORCID Logo  ; Reutzel, Marcel 1   VIAFID ORCID Logo  ; Puschnig, Peter 2   VIAFID ORCID Logo  ; Jansen, G. S. Matthijs 1   VIAFID ORCID Logo  ; Mathias, Stefan 5   VIAFID ORCID Logo 

 Georg-August-Universität Göttingen, I. Physikalisches Institut, Göttingen, Germany (GRID:grid.7450.6) (ISNI:0000 0001 2364 4210) 
 University of Graz, NAWI Graz, Institute of Physics, Graz, Austria (GRID:grid.5110.5) (ISNI:0000000121539003) 
 University of Kaiserslautern-Landau, Department of Physics and Research Center OPTIMAS, Kaiserslautern, Germany (GRID:grid.519840.1) 
 Univ. Grenoble Alpes, CNRS, Inst NEEL, Grenoble, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282) 
 Georg-August-Universität Göttingen, I. Physikalisches Institut, Göttingen, Germany (GRID:grid.7450.6) (ISNI:0000 0001 2364 4210); University of Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Göttingen, Germany (GRID:grid.7450.6) (ISNI:0000 0001 2364 4210) 
Pages
1804
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2932317100
Copyright
© The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.