Full text

Turn on search term navigation

© 2024 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Acute myeloid leukemia (AML) is associated with a dismal prognosis. Immune checkpoint blockade (ICB) to induce antitumor activity in AML patients has yielded mixed results. Despite the pivotal role of B cells in antitumor immunity, a comprehensive assessment of B lymphocytes within AML’s immunological microenvironment along with their interaction with ICB remains rather constrained.

Methods

We performed an extensive analysis that involved paired single-cell RNA and B-cell receptor (BCR) sequencing on 52 bone marrow aspirate samples. These samples included 6 from healthy bone marrow donors (normal), 24 from newly diagnosed AML patients (NewlyDx), and 22 from 8 relapsed or refractory AML patients (RelRef), who underwent assessment both before and after azacitidine/nivolumab treatment.

Results

We delineated nine distinct subtypes of B cell lineage in the bone marrow. AML patients exhibited reduced nascent B cell subgroups but increased differentiated B cells compared with healthy controls. The limited diversity of BCR profiles and extensive somatic hypermutation indicated antigen-driven affinity maturation within the tumor microenvironment of RelRef patients. We established a strong connection between the activation or stress status of naïve and memory B cells, as indicated by AP-1 activity, and their differentiation state. Remarkably, atypical memory B cells functioned as specialized antigen-presenting cells closely interacting with AML malignant cells, correlating with AML stemness and worse clinical outcomes. In the AML microenvironment, plasma cells demonstrated advanced differentiation and heightened activity. Notably, the clinical response to ICB was associated with B cell clonal expansion and plasma cell function.

Conclusions

Our findings establish a comprehensive framework for profiling the phenotypic diversity of the B cell lineage in AML patients, while also assessing the implications of immunotherapy. This will serve as a valuable guide for future inquiries into AML treatment strategies.

Details

Title
Paired single-B-cell transcriptomics and receptor sequencing reveal activation states and clonal signatures that characterize B cells in acute myeloid leukemia
Author
Guo, Shengnan 1   VIAFID ORCID Logo  ; Mohan, Gopi S 2   VIAFID ORCID Logo  ; Wang, Bofei 3 ; Li, Tianhao 1 ; Daver, Naval 3 ; Zhao, Yuting 1 ; Reville, Patrick K 3 ; Hao, Dapeng 1 ; Abbas, Hussein A 4   VIAFID ORCID Logo 

 School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China 
 Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA 
 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA 
 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA 
First page
e008318
Section
Basic tumor immunology
Publication year
2024
Publication date
Feb 2024
Publisher
BMJ Publishing Group LTD
e-ISSN
20511426
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2932581393
Copyright
© 2024 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.