Content area

Abstract

In this report, we present our solution to the multi-task robustness track of the 1st Visual Continual Learning (VCL) Challenge at ICCV 2023 Workshop. We propose a vanilla framework named UniNet that seamlessly combines various visual perception algorithms into a multi-task model. Specifically, we choose DETR3D, Mask2Former, and BinsFormer for 3D object detection, instance segmentation, and depth estimation tasks, respectively. The final submission is a single model with InternImage-L backbone, and achieves a 49.6 overall score (29.5 Det mAP, 80.3 mTPS, 46.4 Seg mAP, and 7.93 silog) on SHIFT validation set. Besides, we provide some interesting observations in our experiments which may facilitate the development of multi-task learning in dense visual prediction.

Details

1009240
Title
A Vanilla Multi-Task Framework for Dense Visual Prediction Solution to 1st VCL Challenge -- Multi-Task Robustness Track
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Feb 27, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-02-28
Milestone dates
2024-02-27 (Submission v1)
Publication history
 
 
   First posting date
28 Feb 2024
ProQuest document ID
2932621464
Document URL
https://www.proquest.com/working-papers/vanilla-multi-task-framework-dense-visual/docview/2932621464/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-02-29
Database
ProQuest One Academic