Full text

Turn on search term navigation

Copyright © 2024 Abinet Addis. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This study aimed to map the landslide susceptibility in the Chemoga watershed, Ethiopia, using Geographic Information System (GIS) and bivariate statistical models. Based on Google earth imagery and field survey, about 169 landslide locations were identified and classified randomly into training datasets (70%) and test datasets (30%). Eleven landslides conditioning factors, including slope, elevation, aspect, curvature, topographic wetness index, normalized difference vegetation index, road, river, land use, rainfall, and lithology were integrated with training landslides to determine the weights of each factor and factor classes using both frequency ratio (FR) and information value (IV) models. The final landslide susceptibility map was classified into five classes: very low, low, moderate, high, and very high. The results of area under the curve (AUC) accuracy models showed that the success rates of the FR and IV models were 87.00% and 90.10%, while the prediction rates were 88.00% and 92.30%, respectively. This type of study will be very useful to the local government for future planning and decision on landslide mitigation plans.

Details

Title
Landslide Susceptibility Mapping Using GIS and Bivariate Statistical Models in Chemoga Watershed, Ethiopia
Author
Addis, Abinet 1   VIAFID ORCID Logo 

 Department of Civil Engineering, Debre Markos University, Debre Markos, Ethiopia 
Editor
Gang Mei
Publication year
2024
Publication date
2024
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2933995896
Copyright
Copyright © 2024 Abinet Addis. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/