Full Text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photodynamic therapy (PDT) is a promising treatment against bacteria-caused infections. By producing large amounts of reactive oxygen species (ROS), PDT can effectively eliminate pathogenic bacteria, without causing drug resistance. However, excessive ROS may also impose an oxidative stress on surrounding tissues, resulting in local inflammation. To avoid this major drawback and limit pro-inflammation during PDT, this work prepared a supramolecular photosensitizer (TPP-CN/CP5) based on host-guest interactions between a cysteine-responsive cyano-tetraphenylporphyrin (TPP-CN) and a water-soluble carboxylatopillar[5]arene (CP5). TPP-CN/CP5 not only possesses excellent photodynamic antibacterial properties, but also shows good anti-inflammatory and cell protection capabilities. Under 660 nm light irradiation, TPP-CN/CP5 could rapidly produce abundant ROS for sterilization. After the PDT process, the addition of cysteine (Cys) triggers the release of H2S from TPP-CN. H2S then stops the induced inflammation by inhibiting the production of related inflammatory factors. Both in vitro and in vivo experiments show the excellent antibacterial effects and anti-inflammatory abilities of TPP-CN/CP5. These results will certainly promote the clinical application of PDT in the treatment of bacterial infectious diseases.

Details

Title
A H2S-Generated Supramolecular Photosensitizer for Enhanced Photodynamic Antibacterial Infection and Relieving Inflammation
Author
Tian, Jia 1   VIAFID ORCID Logo  ; Huang, Baoxuan 1 ; Xia, Lei 1 ; Zhu, Yucheng 1 ; Zhang, Weian 1   VIAFID ORCID Logo 

 Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, China 
Section
Research Articles
Publication year
2024
Publication date
Mar 2024
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2937665849
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.