Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study delves into the properties and behavior of xanthan TNCS-ST, a specialized variant designed for enhanced oil recovery (EOR) purposes. A notable aspect of this polymer is its transparency and capability to dissolve in high salt concentrations, notably up to 18% total dissolved solids. Various laboratory methods are employed to assess the polymer’s distinctive traits, including transparency, salt tolerance, and high pyruvylation. These methods encompass preparing xanthan solutions, conducting filtration tests, assessing energy consumption, and measuring rheological properties. The findings highlight the influence of salt concentration on xanthan’s filterability, indicating increased energy requirements for dissolution with higher salt and xanthan concentrations. Additionally, this study observes temperature-dependent viscosity behavior in different solutions and evaluates the shear stability of xanthan. A significant and novel characteristic of TNCS-ST is its high salt tolerance, enabling complete dissolution at elevated salt concentrations, thus facilitating the filterability of the xanthan solution with sufficient time and energy input. Core flooding experiments investigate fluid dynamics within porous rock formations, particularly sandstone and carbonate rocks, while varying salinity. The results underscore the substantial potential of the new xanthan polymer, demonstrating its ability to enhance oil recovery in sandstone and carbonate rock formations significantly. Remarkably, the study achieves a noteworthy 67% incremental recovery in carbonate rock under the high salinity level tested, suggesting promising prospects for advancing enhanced oil recovery applications.

Details

Title
Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy
Author
Hublik, Gerd 1   VIAFID ORCID Logo  ; Kharrat, Riyaz 2   VIAFID ORCID Logo  ; Dastjerdi, Ali Mirzaalian 2   VIAFID ORCID Logo  ; Ott, Holger 2   VIAFID ORCID Logo 

 Jungbunzlauer Austria AG, 2064 Wulzeshofen, Austria; [email protected] 
 Department Geoenergy, Montanuniversität Leoben, 8700 Leoben, Austria; [email protected] (A.M.D.); [email protected] (H.O.) 
First page
1266
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955522184
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.