Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Trace ethylene poses a significant challenge during the storage and transportation of agricultural products, causing over-ripening, reducing shelf life, and leading to food waste. Zeolite-supported silver adsorbents show promise for efficiently removing trace ethylene. Herein, hierarchical Ag/NZ5(X) adsorbents were prepared via different ammonia modifications, which featured enhanced ethylene adsorption ability. Ag/NZ5(2.5) exhibited the largest capacity and achieved near-complete removal at room temperature with prolonged efficacy. Characterization results indicated that the ammonia modification led to the formation of a hierarchical structure in the zeolite framework, reducing diffusion resistance and increasing the accessibility of the active sites. Additionally, desilication effects increased the defectiveness, generating a stronger metal–support interaction and resulting in a higher metal dispersion rate. These findings provide valuable insights into the development of efficient adsorbents for removing trace ethylene, thereby reducing food waste and extending the shelf life of agricultural products.

Details

Title
Enhanced Adsorption of Trace Ethylene on Ag/NZ5 Modified with Ammonia: Hierarchical Structure and Metal Dispersion Effects
Author
Qi, Ying; Yang, Huaming  VIAFID ORCID Logo  ; Li, Chunli  VIAFID ORCID Logo  ; Li, Hao  VIAFID ORCID Logo 
First page
981
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955896570
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.