Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a sensor fusion method for navigation of unmanned underwater vehicles. The method combines Lie theory into Kalman filter to estimate and compensate for the misalignment between the sensors: inertial navigation system and Doppler Velocity Log (DVL). In the process and measurement model equations, a 3-dimensional Euclidean group (SE(3)) and 3-sphere space (S3) are used to express the pose (position and attitude) and misalignment, respectively. SE(3) contains position and attitude transformation matrices, and S3 comprises unit quaternions. The increments in pose and misalignment are represented in the Lie algebra, which is a linear space. The use of Lie algebra facilitates the application of an extended Kalman filter (EKF). The previous EKF approach without Lie theory is based on the assumption that a non-differentiable space can be approximated as a differentiable space when the increments are sufficiently small. On the contrary, the proposed Lie theory approach enables exact differentiation in a differentiable space, thus enhances the accuracy of the navigation. Furthermore, the convergence and stability of the internal parameters, such as the Kalman gain and measurement innovation, are improved.

Details

Title
Sensor Fusion for Underwater Vehicle Navigation Compensating Misalignment Using Lie Theory
Author
Da Bin Jeong  VIAFID ORCID Logo  ; Nak Yong Ko  VIAFID ORCID Logo 
First page
1653
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955909123
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.