Content area

Abstract

Background:The early prediction of antibiotic resistance in patients with a urinary tract infection (UTI) is important to guide appropriate antibiotic therapy selection.

Objective:In this study, we aimed to predict antibiotic resistance in patients with a UTI. Additionally, we aimed to interpret the machine learning models we developed.

Methods:The electronic medical records of patients who were admitted to Yongin Severance Hospital, South Korea were used. A total of 71 features extracted from patients’ admission, diagnosis, prescription, and microbiology records were used for classification. UTI pathogens were classified as either sensitive or resistant to cephalosporin, piperacillin-tazobactam (TZP), carbapenem, trimethoprim-sulfamethoxazole (TMP-SMX), and fluoroquinolone. To analyze how each variable contributed to the machine learning model’s predictions of antibiotic resistance, we used the Shapley Additive Explanations method. Finally, a prototype machine learning–based clinical decision support system was proposed to provide clinicians the resistance probabilities for each antibiotic.

Results:The data set included 3535, 737, 708, 1582, and 1365 samples for cephalosporin, TZP, TMP-SMX, fluoroquinolone, and carbapenem resistance prediction models, respectively. The area under the receiver operating characteristic curve values of the random forest models were 0.777 (95% CI 0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI 0.874-0.880), 0.881 (95% CI 0.879-0.882), and 0.884 (95% CI 0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642), 0.630 (95% CI 0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670 (95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the test set for predicting resistance to cephalosporin, TZP, carbapenem, TMP-SMX, and fluoroquinolone, respectively. The number of previous visits, first culture after admission, chronic lower respiratory diseases, administration of drugs before infection, and exposure time to these drugs were found to be important variables for predicting antibiotic resistance.

Conclusions:The study results demonstrated the potential of machine learning to predict antibiotic resistance in patients with a UTI. Machine learning can assist clinicians in making decisions regarding the selection of appropriate antibiotic therapy in patients with a UTI.

Details

1009240
Business indexing term
Company / organization
Title
Prediction of Antibiotic Resistance in Patients With a Urinary Tract Infection: Algorithm Development and Validation
Publication title
Volume
12
First page
e51326
Publication year
2024
Publication date
2024
Section
Decision Support for Health Professionals
Publisher
JMIR Publications
Place of publication
Toronto
Country of publication
Canada
e-ISSN
22919694
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-02-29
Milestone dates
2023-07-27 (Preprint first published); 2023-07-27 (Submitted); 2023-11-17 (Revised version received); 2024-01-08 (Accepted); 2024-02-29 (Published)
Publication history
 
 
   First posting date
29 Feb 2024
ProQuest document ID
2956706938
Document URL
https://www.proquest.com/scholarly-journals/prediction-antibiotic-resistance-patients-with/docview/2956706938/se-2?accountid=208611
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-08-26
Database
ProQuest One Academic