Abstract

Background

The clinical meaningfulness of the effects of recently approved disease-modifying treatments (DMT) in Alzheimer’s disease is under debate. Available evidence is limited to short-term effects on clinical rating scales which may be difficult to interpret and have limited intrinsic meaning to patients. The main value of DMTs accrues over the long term as they are expected to cause a delay or slowing of disease progression. While awaiting such evidence, the translation of short-term effects to time delays or slowing of progression could offer a powerful and readily interpretable representation of clinical outcomes.

Methods

We simulated disease progression trajectories representing two arms, active and placebo, of a hypothetical clinical trial of a DMT. The placebo arm was simulated based on estimated mean trajectories of clinical dementia rating scale–sum of boxes (CDR-SB) recordings from amyloid-positive subjects with mild cognitive impairment (MCI) from Alzheimer’s Disease Neuroimaging Initiative (ADNI). The active arm was simulated to show an average slowing of disease progression versus placebo of 20% at each visit. The treatment effects in the simulated trials were estimated with a progression model for repeated measures (PMRM) and a mixed model for repeated measures (MMRM) for comparison. For PMRM, the treatment effect is expressed in units of time (e.g., days) and for MMRM in units of the outcome (e.g., CDR-SB points). PMRM results were implemented in a health economics Markov model extrapolating disease progression and death over 15 years.

Results

The PMRM model estimated a 19% delay in disease progression at 18 months and 20% (~ 7 months delay) at 36 months, while the MMRM model estimated a 25% reduction in CDR-SB (~ 0.5 points) at 36 months. The PMRM model had slightly greater power compared to MMRM. The health economic model based on the estimated time delay suggested an increase in life expectancy (10 months) without extending time in severe stages of disease.

Conclusion

PMRM methods can be used to estimate treatment effects in terms of slowing of progression which translates to time metrics that can be readily interpreted and appreciated as meaningful outcomes for patients, care partners, and health care practitioners.

Details

Title
Progression analysis versus traditional methods to quantify slowing of disease progression in Alzheimer’s disease
Author
Jönsson, Linus; Ivkovic, Milana; Atri, Alireza; Handels, Ron; Gustavsson, Anders; Hahn-Pedersen, Julie Hviid; León, Teresa; Lilja, Mathias; Gundgaard, Jens; Lars Lau Raket
Pages
1-11
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
17589193
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2956879560
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.