It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
More than half of the global population lives in areas at risk of dengue (DENV) transmission. Developing an efficient risk prediction system can help curb dengue outbreaks, but multiple variables, including mosquito-based surveillance indicators, still constrain our understanding. Mosquito or oviposition positive index (MOI) has been utilized in field surveillance to monitor the wild population density of Aedes albopictus in Guangzhou since 2005.
Methods
Based on the mosquito surveillance data using Mosq-ovitrap collection and human landing collection (HLC) launched at 12 sites in Guangzhou from 2015 to 2017, we established a MOI-based model of the basic dengue reproduction number (R0) using the classical Ross-Macdonald framework combined with a linear mixed-effects model.
Results
During the survey period, the mean MOI and adult mosquito density index (ADI) using HLC for Ae. albopictus were 12.96 ± 17.78 and 16.79 ± 55.92, respectively. The R0 estimated from the daily ADI (ADID) showed a significant seasonal variation. A 10-unit increase in MOI was associated with 1.08-fold (95% CI 1.05, 1.11) ADID and an increase of 0.14 (95% CI 0.05, 0.23) in the logarithmic transformation of R0. MOI-based R0 of dengue varied by month and average monthly temperature. During the active period of Ae. albopictus from April to November in Guangzhou region, a high risk of dengue outbreak was predicted by the MOI-based R0 model, especially from August to October, with the predicted R0 > 1. Meanwhile, from December to March, the estimates of MOI-based R0 were < 1.
Conclusions
The present study enriched our knowledge about mosquito-based surveillance indicators and indicated that the MOI of Ae. albopictus could be valuable for application in estimating the R0 of dengue using a statistical model. The MOI-based R0 model prediction of the risk of dengue transmission varied by month and temperature in Guangzhou. Our findings lay a foundation for further development of a complex efficient dengue risk prediction system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer