Abstract

Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.

Here, the authors develop a hybrid agent-based model to quantify the contributions of intrinsic cellular mechanisms and bone ecosystem factors to therapy resistance in multiple myeloma. They show that intrinsic mechanisms are essential for resistance, and that the bone microenvironment provides a protective niche that increases the likelihood.

Details

Title
The bone ecosystem facilitates multiple myeloma relapse and the evolution of heterogeneous drug resistant disease
Author
Bishop, Ryan T. 1   VIAFID ORCID Logo  ; Miller, Anna K. 2   VIAFID ORCID Logo  ; Froid, Matthew 3 ; Nerlakanti, Niveditha 4   VIAFID ORCID Logo  ; Li, Tao 1 ; Frieling, Jeremy S. 1   VIAFID ORCID Logo  ; Nasr, Mostafa M. 4 ; Nyman, Karl J. 4 ; Sudalagunta, Praneeth R. 5   VIAFID ORCID Logo  ; Canevarolo, Rafael R. 5   VIAFID ORCID Logo  ; Silva, Ariosto Siqueira 5 ; Shain, Kenneth H. 6 ; Lynch, Conor C. 1   VIAFID ORCID Logo  ; Basanta, David 2   VIAFID ORCID Logo 

 H. Lee Moffitt Cancer Center and Research Institute, Department of Tumor Microenvironment and Metastasis, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233) 
 H. Lee Moffitt Cancer Center and Research Institute, Department of Integrated Mathematical Oncology, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233) 
 H. Lee Moffitt Cancer Center and Research Institute, Department of Integrated Mathematical Oncology, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233); University of South Florida, The Cancer Biology Ph.D. Program, Tampa, USA (GRID:grid.170693.a) (ISNI:0000 0001 2353 285X) 
 H. Lee Moffitt Cancer Center and Research Institute, Department of Tumor Microenvironment and Metastasis, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233); University of South Florida, The Cancer Biology Ph.D. Program, Tampa, USA (GRID:grid.170693.a) (ISNI:0000 0001 2353 285X) 
 H. Lee Moffitt Cancer Center and Research Institute, Department of Metabolism and Physiology, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233) 
 H. Lee Moffitt Cancer Center and Research Institute, Department of Tumor Microenvironment and Metastasis, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233); H. Lee Moffitt Cancer Center and Research Institute, Department of Malignant Hematology, Tampa, USA (GRID:grid.468198.a) (ISNI:0000 0000 9891 5233) 
Pages
2458
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2968660315
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.