Abstract
Cooling load estimation is crucial for energy conservation in cooling systems, with applications like advanced air-conditioning control and chiller optimization. Traditional methods include energy simulation and regression analysis, but artificial intelligence outperforms them. Artificial intelligence models autonomously capture complex patterns, adapt, and scale with more data. They excel at predicting cooling loads influenced by various factors, like weather, building materials, and occupancy, leading to dynamic, responsive predictions and energy optimization. Traditional methods simplify real-world complexities, highlighting artificial intelligence’s role in precise cooling load forecasting for energy-efficient building management. This study evaluates Naive Bayes-based models for estimating building cooling load consumption. These models encompass a single model, one optimized with the Mountain Gazelle Optimizer and another optimized with the horse herd optimization algorithm. The training dataset consists of 70% of the data, which incorporates eight input variables related to the geometric and glazing characteristics of the buildings. Following the validation of 15% of the dataset, the performance of the remaining 15% is tested. Based on analysis through evaluation metrics, among the three candidate models, Naive Bayes optimized with the Mountain Gazelle Optimizer (NBMG) demonstrates remarkable accuracy and stability, reducing prediction errors by an average of 18% and 31% compared to the other two models (NB and NBHH) and achieving a maximum R2 value of 0.983 for cooling load prediction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Tourism College of Changchun University, Basic Department, Changchun, China (GRID:grid.440663.3) (ISNI:0000 0000 9457 9842)





