It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We employ scattering amplitudes in curved space to model the dynamics of a light probe particle with mass m orbiting in the background spacetime induced by a heavy gravitational source with mass M. Observables are organized as an expansion in m/M to all orders in G — the gravitational self-force expansion. An essential component of our analysis is the backreaction of the heavy source which we capture by including the associated light degrees of freedom. As illustration we consider a Schwarzschild background and verify geodesic motion as well as the first-order self-force correction to two-body scattering through
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Université de Genève, Département de Physique Théorique, Geneva, Switzerland (GRID:grid.8591.5) (ISNI:0000 0001 2175 2154)
2 University of California Los Angeles, Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0001 2167 8097)