It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Siberia experienced a prolonged heatwave in the spring of 2020, resulting in extreme summer drought and major wildfires in the North-Eastern Siberian lowland tundra. In the Arctic tundra, plants play a key role in regulating the summer land surface energy budget by contributing to land surface cooling through evapotranspiration. Yet we know little about how drought conditions impact land surface cooling by tundra plant communities, potentially contributing to high air temperatures through a positive plant-mediated feedback. Here we used high-resolution land surface temperature and vegetation maps based on drone imagery to determine the impact of an extreme summer drought on land surface cooling in the lowland tundra of North-Eastern Siberia. We found that land surface cooling differed strongly among plant communities between the drought year 2020 and the reference year 2021. Further, we observed a decrease in the normalized land surface cooling (measured as water deficit index) in the drought year 2020 across all plant communities. This indicates a shift towards an energy budget dominated by sensible heat fluxes, contributing to land surface warming. Overall, our findings suggest significant variation in land surface cooling among common Arctic plant communities in the North-Eastern Siberian lowland tundra and a pronounced effect of drought on all community types. Based on our results, we suggest discriminating between functional tundra plant communities when predicting the drought impacts on energy flux related processes such as land surface cooling, permafrost thaw and wildfires.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich, Switzerland; Department of Geography, University of Zurich , Zurich, Switzerland
2 Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich, Switzerland
3 Department of Geography, University of Zurich , Zurich, Switzerland
4 Department of Geography, University of Zurich , Zurich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
5 Institute for Biological Problems of the Cryolithozone, Siberian Branch Russian Academy of Sciences , Yakutsk, Russia
6 Department of Earth and Climate, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands