Content area

Abstract

Language model-based code completion models have quickly grown in use, helping thousands of developers write code in many different programming languages. However, research on code completion models typically focuses on imperative languages such as Python and JavaScript, which results in a lack of representation for functional programming languages. Consequently, these models often perform poorly on functional languages such as Haskell. To investigate whether this can be alleviated, we evaluate the performance of two language models for code, CodeGPT and UniXcoder, on the functional programming language Haskell. We fine-tune and evaluate the models on Haskell functions sourced from a publicly accessible Haskell dataset on HuggingFace. Additionally, we manually evaluate the models using our novel translated HumanEval dataset. Our automatic evaluation shows that knowledge of imperative programming languages in the pre-training of LLMs may not transfer well to functional languages, but that code completion on functional languages is feasible. Consequently, this shows the need for more high-quality Haskell datasets. A manual evaluation on HumanEval-Haskell indicates CodeGPT frequently generates empty predictions and extra comments, while UniXcoder more often produces incomplete or incorrect predictions. Finally, we release HumanEval-Haskell, along with the fine-tuned models and all code required to reproduce our experiments on GitHub (https://github.com/AISE-TUDelft/HaskellCCEval).

Details

1009240
Identifier / keyword
Title
Investigating the Performance of Language Models for Completing Code in Functional Programming Languages: a Haskell Case Study
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Mar 22, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-03-25
Milestone dates
2024-03-22 (Submission v1)
Publication history
 
 
   First posting date
25 Mar 2024
ProQuest document ID
2982185529
Document URL
https://www.proquest.com/working-papers/investigating-performance-language-models/docview/2982185529/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-03-26
Database
ProQuest One Academic