Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The finite element simulation is a valid way for the rapid development of the root-cutting mechanism for hydroponic Chinese kale. The stem of the hydroponic Chinese kale was simplified as a transverse isotropic elastic body, and axial compression, three-point bending, and shear tests were performed. The ANSYS/LS-DYNA19.2 software was adopted for stem shear simulation, and the regression equation of the maximum simulated shear force was established. The optimized mechanical parameters were determined by minimizing the deviation between the maximum shear force obtained from the simulation and test. The three-dimensional scanning method was employed to establish the geometric model of the hydroponic Chinese kale stem. The cutting finite element simulation model and test platform were constructed. Displacement, deformation, and force measured from simulation and test were compared. Through measurement and simulation calibration, an axial elastic modulus of 6.22 MPa, axial Poisson’s ratio of 0.46, radial elastic modulus of 3.56 MPa, radial Poisson’s ratio of 0.44, radial shear modulus of 0.8 MPa, and a failure strain of 0.08 were determined. During the cutting simulation and test, the resulting maximum displacement deviations of the marking points on the end of the stem were 0.68 mm along the X-axis and 2.83 mm along the Y-axis, while the maximum deviations of the cutting and clamping force were 0.49 N and 0.77 N, respectively. The deformation and force variation laws of the kale stem in the cutting simulation and test process were basically consistent. It showed that the mechanical parameters calibrated by the simulation were accurate and effective, and the stem cutting simulation results with the finite element method were in good agreement with that of the cutting test. The study provided a reference for the rapid optimization design of the root-cutting mechanism for hydroponic Chinese kale harvest.

Details

Title
Finite Element Simulation Parameter Calibration and Verification for Stem Cutting of Hydroponic Chinese Kale
Author
Xia, Hongmei; Li, Liuquan; Deng, Chuheng; Zhu, Shicheng; Chen, Jieqing; Yang, Teng; Huang, Runxin; Zhen, Wenbin
First page
422
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2987069642
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.