Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a comparative analysis of the performance of Equivariant Quantum Neural Networks (EQNNs) and Quantum Neural Networks (QNNs), juxtaposed against their classical counterparts: Equivariant Neural Networks (ENNs) and Deep Neural Networks (DNNs). We evaluate the performance of each network with three two-dimensional toy examples for a binary classification task, focusing on model complexity (measured by the number of parameters) and the size of the training dataset. Our results show that the Z2×Z2 EQNN and the QNN provide superior performance for smaller parameter sets and modest training data samples.

Details

Title
2 × ℤ2 Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
Author
Dong, Zhongtian 1   VIAFID ORCID Logo  ; Marçal Comajoan Cara 2   VIAFID ORCID Logo  ; Gopal Ramesh Dahale 3   VIAFID ORCID Logo  ; Forestano, Roy T 4   VIAFID ORCID Logo  ; Gleyzer, Sergei 5   VIAFID ORCID Logo  ; Justice, Daniel 6   VIAFID ORCID Logo  ; Kong, Kyoungchul 1   VIAFID ORCID Logo  ; Magorsch, Tom 7   VIAFID ORCID Logo  ; Matchev, Konstantin T 4   VIAFID ORCID Logo  ; Matcheva, Katia 4   VIAFID ORCID Logo  ; Unlu, Eyup B 4   VIAFID ORCID Logo 

 Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA; [email protected] 
 Department of Signal Theory and Communications, Polytechnic University of Catalonia, 08034 Barcelona, Spain; [email protected] 
 Indian Institute of Technology Bhilai, Kutelabhata, Khapri, District-Durg, Chhattisgarh 491001, India; [email protected] 
 Institute for Fundamental Theory, Physics Department, University of Florida, Gainesville, FL 32611, USA; [email protected] (R.T.F.); [email protected] (K.T.M.); [email protected] (K.M.); [email protected] (E.B.U.) 
 Department of Physics & Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA; [email protected] 
 Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh, PA 15213, USA; [email protected] 
 Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany; [email protected] 
First page
188
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20751680
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2989256789
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.