Content area
Vectorial Boolean functions and codes are closely related and interconnected. On the one hand, various requirements of binary linear codes are needed for their theoretical interests but, more importantly, for their practical applications (such as few-weight codes or minimal codes for secret sharing, locally recoverable codes for storage, etc.). On the other hand, various criteria and tables have been introduced to analyse the security of S-boxes that are related to vectorial Boolean functions, such as the Differential Distribution Table (DDT), the Boomerang Connectivity Table (BCT), and the Differential-Linear Connectivity Table (DLCT). In previous years, two new tables have been proposed for which the literature was pretty abundant: the c-DDT to extend the DDT and the c-BCT to extend the BCT. In the same vein, we propose extended concepts to study further the security of vectorial Boolean functions, especially the c-Walsh transform, the c-autocorrelation, and the c-differential-linear uniformity and its accompanying table, the c-Differential-Linear Connectivity Table (c-DLCT). We study the properties of these novel functions at their optimal level concerning these concepts and describe the c-DLCT of the crucial inverse vectorial (Boolean) function case. Finally, we draw new ideas for future research toward linear code designs.
1. Introduction
Vectorial Boolean functions are intensively used to produce S-boxes in block ciphers such as DES [1], Rinjdael or AES [2], Blowfish [3], GOST [4], and Serpent [5]. Various criteria have been proposed to test the resistance of S-boxes and the corresponding vectorial Boolean functions to known cryptanalytical attacks, such as the differential attack [6], the linear attack [7], and some of their variants.
Let be a -vectorial Boolean function. The derivative of F in the direction of is the function The derivative is used to analyse the resistance of a vectorial Boolean function to the differential attack [6] and serves to build the Differential Distribution Table (DDT). The derivative is also used in the Boomerang Connectivity Table (BCT) [8] and in the Differential-Linear Connectivity Table (DLCT) [9,10]. The entry at of the DDT is defined by
To measure the resistance of a vectorial Boolean function, Nyberg [11] introduced the differential uniformity as The most resistant vectorial Boolean functions have small differential uniformities. The reader can consult the [12] for a complete background on vectorial Boolean functions with a deep analysis of their cryptographic aspects.At FSE 2002, Borisov et al. [13] proposed a variant of the differential attack to study ciphers’ resistance based on using modular multiplication as a primitive operation. This motivated Ellingsen et al. [14] to introduce the concept of c-differentials to study the resistance of a vectorial Boolean function to multiplicative variants of the differential attack. For a vectorial Boolean function and , the c-derivative F with respect to is the -vectorial Boolean function defined by for all . The c-derivative is used to study the resistance of ciphers based on popular vectorial Boolean functions such as the inverse function [15], the Gold function [16], and various other functions [17,18,19,20,21]. As for the DDT, a c-differential table was proposed in [14], where the entry at is defined by
Also, a c-differential uniformity was proposed in [14] byThe construction of functions, particularly permutations, with low c-differential uniformity is an interesting problem, and recent work has focused heavily on this direction. Likewise, regarding the original notion of differential uniformity leading to optimal functions Perfect Nonlinear (PN) and Almost Perfect Nonlinear (APN) over finite fields in odd and even characteristics, respectively, optimal functions having the lowest possible values of a c-differential uniformity have also been introduced. One can refer to [19,22,23,24,25,26,27] and the references therein. Some of those functions with low c-differential uniformity have been investigated. There are relatively few known (non-trivial, nonlinear) optimal classes of PcN and APcN functions over finite fields with an even characteristic (see, e.g., [18,28,29,30,31] and the references therein).
Another popular cryptanalysis attack on S-boxes derived from Boolean functions is the boomerang attack, proposed by Wagner [32] in 1999. In connection with the boomerang attack, Cid et al. [8] proposed the Boomerang Connectivity Table (BCT) for a vectorial Boolean function where the entry at is defined by
Based on the BCT, Boura and Canteaut [33] introduced the boomerang uniformity of a vectorial Boolean function to measure its resistance against boomerang attack. The boomerang uniformity of F is defined byTo extend the BCT and the boomerang uniformity of a vectorial Boolean function, Stǎnicǎ [34] introduced the concept of the c-Boomerang Connectivity Table (c-BCT). For , the c-BCT is defined at the entry by
The corresponding c-boomerang uniformity is defined by More generalizations of the differential and boomerang uniformities can be found in [35].In 2019, Bar-On et al. [10] (see also [9]) introduced the Differential-Linear Connectivity Table (DLCT) of a vectorial Boolean function where the entry at is defined by
where is the inner product of x and y on . To measure the resistance of an S-box connected to a vectorial Boolean function, the differential-linear uniformity of F can be used, as defined by Li et al. in [36], Various links exist between the DLCT and the Autocorrelation Table (ACT) of a vectorial Boolean function F. The ACT is defined at by The corresponding absolute indicator is defined as In [37], Canteaut et al. showed that the DLCT and the ACT of a vectorial Boolean function satisfy and for all .One can observe that the derivative of a Boolean function F is used in various tables, such as the DDT, the BCT, and the DLCT. Motivated by the crucial role of the derivative in the former tables and the attacks related to them, we propose three new concepts towards the c-derivative :
•. The c-Walsh transform of a vectorial Boolean function F: For , it is defined for and by
•. The c-autocorrelation of a vectorial Boolean function: Let , . The c-autocorrelation of F at is the integer
The absolute indicator is
and the autocorrelation spectrum is•. The c-Differential-Linear Connectivity Table (c-DLCT) where we use the c-derivative: Let . The c-DLCT of F is a table where the entry at is defined by
We also define the c-differential-linear uniformity of F as
and, also, we define the c-DLCT spectrum of F by
We show that there are numerous relationships between the three new concepts. Typically, we show that for all and .
Moreover, we focus on the inverse function defined on by if , and . We study its c-DLCT and give an explicit value for the entries, including when .
We mention that there is an interesting connection between c differential uniformity and combinatorial designs, which has been highlighted in [38] by showing that the graph of a perfect c-nonlinear function (an optimal function concerning the c differential uniformity) is a set of differences in a quasigroup. Difference sets give rise to symmetric designs, which are known to build optimal self-complementary codes. Some types of designs also have concrete applications such as secret sharing and visual cryptography.
Finally, we emphasise that one of our practical applications in brother research lines is to use the derived (optimal) functions (see, e.g., [12]) to derive minimal binary linear codes (see, e.g., [39]) that are needed for their theatrical interests but, more importantly, for their practical applicants such as few-weight codes or minimal codes for secret sharing and securing two-party computation.
The rest of this paper is organized as follows. Section 2 presents some known results that will be used in this paper. In Section 3, we define the c-Walsh and the c-autocorrelation of a vectorial Boolean function and study some of their properties. In Section 4, we present the concept of the c-DLCT and study its properties. We investigate the c-DLCT of the inverse function in Section 5. Finally, Section 6 concludes the paper and presents new ideas for future research toward linear code designs along the same lines as designing (minimal) codes from Almost Perfect Nonlinear (APN) and recent achievements [40] on minimal codes from low differential uniformity.
2. Preliminaries
In this section, we present some results and definitions that will be used in the next sections, including the c-derivative and the c-differential uniformity of a vectorial Boolean function.
For , we define the orthogonal space of b as follows.
For , the orthogonal space of b is defined by
where is the inner product of b and x on .
The following result gives an explicit value for .
For , the orthogonal space of b satisfies
It is obvious that . Suppose that . Then, the binary expansion of b is in the following form.
Suppose that for some j with . Let such that , that is , with the binary expansion Let with the binary expansion Then, Hence, . It follows that for , each element x of satisfying is in correspondence with one element y of satisfying . As a consequence, we have . □For , let be the finite field with elements. The trace of an element is given by
and satisfies . The trace function satisfies for all .The following lemma is well known and is useful for our work.
Let n and k be positive integers and . Then,
Some specific equations on may be involved. The following result deals with the quadratic equation.
(Proposition 1 of [41]) Let . The equation has
- (i)
One root if and only if .
- (ii)
Two roots if and only if and .
- (iii)
No root if and only if and .
The following lemma concerns another equation on .
Let k and n be positive integers such that . Let , , and . Then, the trinomial has no root if and has roots in if , where , is any element satisfying , and
with any satisfying .
In [14], Ellingsen et al. proposed the concept of c-differentials. The following definitions are valid for binary finite fields.
Let be an -vectorial Boolean function and . The c-derivative F with respect to is the -vectorial function satisfying
for all .
Let be a -vectorial Boolean function, and . The c-differential table of F is an table whose components are defined for and by
Let be a -vectorial Boolean function, and . The c-differential uniformity of F is
3. The -Walsh and -Autocorrelation of a Vectorial Boolean Function
The Walsh transform of a Boolean function is defined at by
where is the inner product of u and x. The Walsh transform serves to compute the linearity of f as For a vectorial Boolean function , the Walsh transform of F is defined for and by and is used to compute the linearity of F by We extend the Walsh transform of a vectorial Boolean function to the c-Walsh transform as follows.Let F be an -vectorial Boolean function, and . The c-Walsh transform of F is defined for and by
The autocorrelation function is used to study various properties of the Boolean functions (see [42]).
Let f be Boolean function defined on . The autocorrelation of f at is the integer
and its absolute indicator is .
We notice that is excluded in the definition of the absolute indicator since . The generalization of the autocorrelation to vectorial Boolean functions can be then defined as follows.
Let F be an -vectorial Boolean function defined on . The autocorrelation of F at is the integer
The absolute indicator is
and the autocorrelation spectrum is
The trivial values are not considered in the definition of the absolute indicator since .
Inspired by Definition 6, we introduce the notion of c-autocorrelation of a Boolean function.
Let f be the Boolean function defined on , and , . The c-autocorrelation of f at is the integer
and the c-absolute indicator is .
Similarly, to generalize Definition 7, we define the c-autocorrelation of a vectorial Boolean function.
Let F be an -vectorial Boolean function defined on , and , . The c-autocorrelation of F at is the integer
The absolute indicator is
and the autocorrelation spectrum is
To ease the study of the c-autocorrelation of a vectorial Boolean function F, we present its c-autocorrelation table defined at by
The following result links the c-autocorrelation of a vectorial Boolean function and its c-Walsh transform.Let F be an Boolean function. Then, for any and any ,
We have
This finishes the proof. □4. The -Differential-Linear Connectivity Table of a Vectorial Boolean Function
In this section, we present a new concept, called the c-Differential-Linear Connectivity Table (c-DLCT), which generalizes the standard DLCT, independently defined in 2018 by Kim et al. [9] and Bar-On et al. [10].
We start by defining the standard Differential-Linear Connectivity Table (DLCT).
Let F be an -vectorial Boolean function. The DLCT of F is an table where the entry at is
The DLCT is a tool that could analyse the relationships between differential and linear parts of a block cipher. One can observe that if is such that , then . Consequently, is always even. Moreover, if , or if , then . This induces the following definition for differential-linear connectivity uniformity.
Let F be an -vectorial Boolean function. The differential-linear connectivity uniformity of F is
The DLCT of a vectorial Boolean function is related to the autocorrelation function by the following relation.
The DLCT is a tool to study the relationships between the linear and the differential properties of a block cipher. For , it counts the number of elements such that . Let , , and , , be two fixed non-zero elements. It is possible to study the relationships between the linear and the differential properties of a block cipher by studying the number of solutions of the equation or equivalently , where . This leads us to define a function’s c-Differential-Linear Connectivity Table (c-DLCT).Let F be an -vectorial Boolean function, and , . The c-DLCT of F is an table where the entry at is
Moreover, the c-differential-linear connectivity uniformity of F is
and the c-DLCT spectrum of F is defined for by
From Definitions 9 and 12, we obtain the following connection between the and the of a vectorial Boolean function.
Let F be -vectorial Boolean function. Then, for all and ,
We have
which gives . On the other hand, we have and . This finishes the proof. □As a consequence of the former proposition, the following result connects the c-DLCT and the c-derivative of a vectorial Boolean function via the Walsh transform.
Let F be an -vectorial Boolean function, and , . Then, for any ,
Combining Definition 2 and the definition of the Walsh transform, we obtain
Then, using Proposition 3, we have and . □The following result shows a connection between the c-DLCT and the c-derivative of a vectorial Boolean function via the Walsh transform.
Let F be an -vectorial Boolean function, and , . Then, for any ,
Combining Proposition 2 and Proposition 4, we obtain
as claimed. □The following result gives a link between and .
Let F be an -vectorial Boolean function, and , . Then, for any ,
By Proposition 3, we have
This leads to which finishes the proof. □5. The -DLCT of the Inverse Function
In this section, we give the explicit values of the entries of the c-DLCT, including the case , and give some numerical results on with .
5.1. The 1-DLCT of the Inverse Function
For , the 1-DLCT satisfies the following result.
Let be the inverse function defined by , and for . For , define the set
where is the orthogonal space of b. Then,
We use the definition
We consider the following cases.Suppose that . Then, for all , . Hence,
Suppose that and . Then, for all , . This leads to
Suppose that and . Consider the equation
(1)
If , then
Hence, is a solution of the Equation (1) if and only if .If , then
Hence, is a solution of the Equation (1) if and only if .Suppose that and . We have
If , then for some , that is or equivalently(2)
If , then the Equation (2) reduces to , which is not possible.
Suppose that . If , then, by Lemma 2, the Equation (2) has no solution, and if , it has two solutions.
Define the set
5.2. The c-DLCT of the Inverse Function for
Let be the inverse function defined by , and for . Let with and . For , define the set
where is the orthogonal space of b. Then,
Suppose that and . We use the definition
We consider the following cases.Case 1. Suppose that . Then, for all , . Hence,
Case 2. Suppose that and . If , then , and . Observe that is a possible solution. If , then there exists such that , that is , and . This leads to
Suppose that and . Consider the equation
(3)
If , then
Hence, is a solution of the Equation (3) if and only if .If , then
Hence, is a solution of the Equation (3) if and only if .Suppose that and . We have
If , then for some , that is or equivalently(4)
If , then the Equation (4) reduces to , which has one solution .
If , then for , the Equation (4) reduces to , which, by Lemma 2, has one solution.
Suppose that and . If , then, by Lemma 2, the Equation (4) has no solution, and if , it has two solutions.
To summarize all the cases, we define the set
5.3. Numerical Results for the c-DLCT of the Inverse Function
We have computed the c-DLCT of the inverse function over for , and all , while for , we only compute it for . The inversion and multiplication in are processed modulo the polynomials presented in Table 1.
In Table 2, we present the values of of the inverse function over with .
For the inverse function over , we present in Table 3 the c-DLCT spectrum and c-differential-linear uniformity for and for small values of c. All the other c-DLCT spectrums reduce to one of the listed ones in the table.
6. Conclusions
In this paper, we introduced and studied new cryptographic tools and parameters to help us quantify the security of S-boxes (mathematically, vectorial Boolean functions) involving block ciphers as main components: the c-Walsh transform, the c-autocorrelation, and the c-differential-linear uniformity. We also introduced a new table called the c-Differential-Linear Connectivity Table (c-DLCT) to analyse attacks related to the differential and the linear attacks. We considered various S-box family properties associated with the above-mentioned notion and presented the values of the c-DLCT of the particular crucial case of the inverse function. Finally, recall that codes over finite fields have been studied extensively because of their linear structures and practical implementations. It is the basis of the research on various kinds of codes. One well-known construction method of linear codes is derived from special functions (essentially from cryptographic functions which play a crucial role in symmetric cryptography) over finite fields (see the book [12]). Cryptographic multi-output Boolean functions and codes have essential data communication and storage applications. These two areas are closely related and have had a fascinating interplay (see, e.g., the book chapter in [43] and the references therein). Cryptographic functions and linear codes are closely related and have had a fascinating interplay. Cryptographic functions (e.g., highly nonlinear functions, Perfect Nonlinear (PN), Almost Perfect Nonlinear (APN), Bent, Almost Bent (AB), and Plateaued) have essential applications in coding theory. For instance, Perfect Nonlinear (APN or PN) functions have been employed to construct optimal linear codes (see, e.g., [44,45,46,47,48] and the references therein). Very recently, Mesnager, Shi, and Zhu [40] proposed several constructions of minimal (cyclic) codes from low differential uniform functions. Given these works, the derived functions from this paper would help design new families of binary minimal codes. We will keep an in-depth study of them in future work and cordially invite interested readers to investigate them.
Conceptualization, S.E. and S.M.; Methodology, S.E. and S.M.; Validation, S.E. and S.M.; Formal analysis, S.E. and S.M.; Investigation, S.E. and S.M.; Writing—original draft, S.E.; Writing—review and editing, S.M. All authors have read and agreed to the published version of the manuscript.
Not applicable.
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
The authors thank the anonymous reviewers for their comments and P. Solé for his kind invitation to contribute to this Special Issue.
The authors declare no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
The polynomials of
| | Polynomial |
|---|---|
| | |
| | |
| | |
| | |
| | |
| | |
The values of
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f |
| 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 8 | 0 | 2 | 2 | 0 | −4 | 2 | −2 | 2 | −4 | 0 | 2 | 2 | 0 | 0 | −2 |
| 2 | 8 | 2 | 0 | −2 | 2 | 2 | 2 | −2 | 0 | 2 | −4 | 2 | −4 | 0 | 0 | 0 |
| 3 | 8 | 0 | 2 | 0 | −2 | −4 | 0 | 0 | −2 | 0 | 2 | 2 | 2 | 2 | 2 | −4 |
| 4 | 8 | −2 | 2 | −2 | 0 | 2 | −4 | 0 | 2 | 0 | 2 | 2 | 2 | −4 | 0 | 0 |
| 5 | 8 | 2 | 0 | 2 | 0 | 0 | −2 | 2 | −4 | 0 | 2 | 2 | −2 | 0 | 2 | −4 |
| 6 | 8 | 0 | −2 | 0 | −2 | 2 | 2 | −4 | 0 | 2 | −4 | 0 | 0 | 2 | 2 | 2 |
| 7 | 8 | 2 | −4 | −4 | 2 | −2 | 0 | 2 | 2 | 0 | 2 | −2 | 0 | 0 | 2 | 0 |
| 8 | 8 | −2 | 0 | 0 | 2 | 2 | 2 | 0 | −2 | 2 | 2 | −4 | 0 | 2 | −4 | 0 |
| 9 | 8 | 2 | −4 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | −4 | 2 | 0 | −2 | −2 |
| a | 8 | 2 | 0 | 2 | −4 | 2 | −2 | −4 | 2 | 0 | 0 | −2 | 0 | 2 | 0 | 2 |
| b | 8 | −4 | 0 | 2 | 0 | 2 | 2 | 2 | 0 | −2 | 0 | 0 | −2 | 2 | −4 | 2 |
| c | 8 | 0 | −2 | −4 | 0 | 0 | 0 | 2 | 0 | −2 | 2 | 2 | 2 | −4 | 2 | 2 |
| d | 8 | 0 | 2 | 2 | −4 | 0 | −4 | 0 | 2 | 2 | 0 | 0 | 2 | −2 | −2 | 2 |
| e | 8 | −4 | 2 | 2 | 2 | −2 | 0 | 0 | 2 | −4 | −2 | 0 | 0 | 2 | 0 | 2 |
| f | 8 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | −4 | 2 | −2 | 0 | −4 | −2 | 2 | 0 |
The c-DLCT spectrum and the c-differential-linear connectivity uniformity of the inverse function over
| | c | | |
|---|---|---|---|
| | 1 | | 4 |
| | 2 | | 2 |
| | 1 | | 4 |
| | 2 | | 4 |
| | 6 | | 4 |
| | 1 | | 4 |
| | 2 | | 6 |
| | 3 | | 6 |
| | 7 | | 4 |
| | 1 | | 8 |
| | 2 | | 8 |
| | 6 | | 8 |
| | 8 | | 8 |
| | 1 | | 12 |
| | 2 | | 12 |
| | 1 | | 16 |
| | 2 | | 16 |
| | 6 | | 16 |
| | 10 | | 16 |
References
1.
2. Daemen, J.; Rijmen, V. The Design of Rijndael: AES–The Advanced Encryption Standard; Information Security and Cryptography; Springer: Berlin/Heidelberg, Germany, 2002.
3. Schneier, B. Description of a New Variable-Length Key, 64-bit Block Cipher (Blowfish). Fast Software Encryption; Anderson, R. Lecture Notes in Computer Science Springer: Berlin/Heidelberg, Germany, 1994; Volume 809, pp. 191-204.
4.
5. Biham, E.; Anderson, R.J.; Knudsen, L.R. Serpent: A new block cipher proposal. Fast Software Encryption, Proceedings of the 5th International Workshop, FSE’98, Paris, France, 23–25 March 1998; Vaudenay, S. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1372, pp. 222-238.
6. Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol.; 1991; 4, pp. 3-72. [DOI: https://dx.doi.org/10.1007/BF00630563]
7. Matsui, M. Linear Cryptanalysis Method for DES Cipher. Advances in Cryptology-EUROCRYPT’93; Helleseth, T. Lecture Notes in Computer Science Springer: Berlin/Heidelberg, Germany, 1994; Volume 765, pp. 386-397.
8. Cid, C.; Huang, T.; Peyrin, T.; Sasaki, Y.; Song, L. Boomerang Connectivity Table: A New Cryptanalysis Tool. Proceedings of the Advances in Cryptology–EUROCRYPT 2018; Tel Aviv, Israel, 29 April– 3 May 2018; Nielsen, J.B.; Rijmen, V. Proceedings, Part II; Lecture Notes in Computer Science Springer: Cham, Switzerland, 2018; Volume 10821, pp. 683-714.
9. Kim, H.; Kim, S.; Hong, D.; Sung, J.; Hong, S. Improved Differential-Linear Cryptanalysis Using DLCT. J. Korea Inst. Inf. Secur. Cryptol.; 2018; 28, pp. 1379-1392.
10. Bar-On, A.; Dunkelman, O.; Keller, N.; Weizman, A. DLCT: A new tool for differential-linear cryptanalysis. Proceedings of the EUROCRYPT 2019; Darmstadt, Germany, 19–23 May 2019; Ishai, Y.; Rijmen, V. Springer: Berlin/Heidelberg, Germany, 2019; Volume 11476, pp. 313-342.
11. Nyberg, K. Differentially uniform mappings for cryptography. Advances in Cryptology–EUROCRYPT’93; Helleseth, T. Lecture Notes in Computer Science Springer: Berlin/Heidelberg, Germany, 1994; Volume 765, pp. 55-64.
12. Carlet, C. Boolean Functions for Cryptography and Coding Theory; Cambridge University Press: Cambridge, UK, 2021.
13. Borisov, N.; Chew, M.; Johnson, R.; Wagner, D. Multiplicative differentials. Fast Software Encryption, Proceedings of the 9th International Workshop, FSE 2002; Leuven, Belgium, 4–6 February 2002; Daemen, J.; Rijmen, V. Springer: Berlin/Heidelberg, Germany, 2002; Volume 2365, pp. 17-33.
14. Ellingsen, P.; Felke, P.; Riera, C.; Stănică, P.; Tkachenko, A. C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity. IEEE Trans. Inf. Theory; 2020; 66, pp. 5781-5789. [DOI: https://dx.doi.org/10.1109/TIT.2020.2971988]
15. Stǎnicǎ, P.; Geary, A. The c-differential behavior of the inverse function under the EA-equivalence. Cryptogr. Commun.; 2021; 13, pp. 295-306. [DOI: https://dx.doi.org/10.1007/s12095-020-00466-8]
16. Stǎnicǎ, P. Low c-differential uniformity for the Gold function modified on a subfield. Proceedings of the International Conference on Security and Privacy (ICSP 2020); Valletta, Malta, 25–27 February 2020; Springer: Singapore, 2021; Volume 744, pp. 131-137.
17. Bartoli, D.; Calderini, M.; Riera, C.; Stǎnicǎ, P. Low c-differential uniformity for functions modified on subfields. Cryptogr. Commun.; 2022; 14, pp. 1211-1227. [DOI: https://dx.doi.org/10.1007/s12095-022-00554-x]
18. Tu, Z.; Li, N.; Wu, Y.; Zeng, X.; Tang, X.; Jiang, Y. On the Differential Spectrum and the APcN Property of a Class of Power Functions Over Finite Fields. IEEE Trans. Inf. Theory; 2023; 69, pp. 582-597. [DOI: https://dx.doi.org/10.1109/TIT.2022.3198133]
19. Wang, X.; Zheng, D.; Hu, L. Several classes of PcN power functions over finite fields. Discret. Appl. Math.; 2022; 322, pp. 171-182. [DOI: https://dx.doi.org/10.1016/j.dam.2022.08.022]
20. Wang, Z.; Mesnager, S.; Li, N.; Zeng, X. On the c-differential uniformity of a class of Niho-type power functions. arXiv; 2023; arXiv: 2305.05231
21. Yan, H.; Zhang, K. On the c-differential spectrum of power functions over finite fields. Des. Codes Cryptogr.; 2022; 90, pp. 2385-2405. [DOI: https://dx.doi.org/10.1007/s10623-022-01086-4]
22. Garg, K.; Hasan, S.U.; Stănică, P. Several classes of permutation polynomials and their differential uniformity properties. arXiv; 2022; arXiv: 2212.01931
23. Hasan, S.U.; Pal, M.; Riera, C.; Stănică, P. On the c-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr.; 2021; 89, pp. 221-239. [DOI: https://dx.doi.org/10.1007/s10623-020-00812-0]
24. Jeong, J.; Koo, N.; Kwon, S. Investigations of c-differential uniformity of permutations with Carlitz rank 3. Finite Fields Appl.; 2023; 86, 102145. [DOI: https://dx.doi.org/10.1016/j.ffa.2022.102145]
25. Li, C.; Riera, C.; Stănică, P. Low c-differentially uniform functions via an extension of Dillon’s switching method. arXiv; 2022; arXiv: 2204.08760
26. Wu, Y.; Li, N.; Zeng, X. New PcN and APcN functions over finite fields. Des. Codes Cryptogr.; 2021; 89, pp. 2637-2651. [DOI: https://dx.doi.org/10.1007/s10623-021-00946-9]
27. Zha, Z.; Hu, L. Some classes of power functions with low c-differential uniformity over finite fields. Des. Codes Cryptogr.; 2021; 89, pp. 1193-1210. [DOI: https://dx.doi.org/10.1007/s10623-021-00866-8]
28. Hasan, S.U.; Pal, M.; Stănică, P. On the c-differential uniformity and boomerang uniformity of two classes of permutation polynomials. IEEE Trans. Inf. Theory; 2022; 68, pp. 679-691. [DOI: https://dx.doi.org/10.1109/TIT.2021.3123104]
29. Jeong, J.; Koo, N.; Kwon, S. On non-monomial APcN permutations over finite fields of even characteristic. arXiv; 2022; arXiv: 2205.11418[DOI: https://dx.doi.org/10.1016/j.ffa.2023.102196]
30. Pal, M. Some new classes of (almost) perfect c-nonlinear permutations. arXiv; 2022; arXiv: 2208.01004
31. Tu, Z.; Zeng, X.; Jiang, Y.; Tang, X. A class of APcN power functions over finite fields of even characteristic. arXiv; 2021; arXiv: 2107.06464v1
32. Wagner, D. The Boomerang Attack. Proceedings of the Fast Software Encryption; Rome, Italy, 24–26 March 1999; Knudsen, L.R. Lecture Notes in Computer Science Springer: Berlin/Heidelberg, Germany, 1999; Volume 1636, pp. 156-170.
33. Boura, C.; Canteaut, A. On the Boomerang Uniformity of Cryptographic Sboxes. IACR Trans. Symmetr. Cryptol. Ruhr Univ. Boch.; 2018; 2018, pp. 290-310. [DOI: https://dx.doi.org/10.46586/tosc.v2018.i3.290-310]
34. Stǎnicǎ, P. Investigations on c-boomerang uniformity and perfect nonlinearity. arXiv; 2021; arXiv: 2004.11859
35. Mesnager, S.; Mandal, B.; Msahli, M. Survey on recent trends towards generalized differential and boomerang uniformities. Cryptogr. Commun.; 2021; 14, pp. 691-735. [DOI: https://dx.doi.org/10.1007/s12095-021-00551-6]
36. Li, K.; Li, C.; Li, C.; Qu, L. On the differential linear connectivity table of vectorial boolean functions. arXiv; 2019; arXiv: 1907.05986
37. Canteaut, A.; Kölsch, L.; Li, C.; Li, C.; Li, K.; Qu, L.; Wiemer, F. On the differential-linear connectivity table of vectorial boolean functions. arXiv; 2019; arXiv: 1908.07445
38. Anbar, N.; Kalayci, T.; Meidl, W.; Riera, C.; Stǎnicǎ, P. PcN functions, complete mappings and quasi-group difference sets. arXiv; 2022; arXiv: 2212.12943
39. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2003.
40. Mesnager, S.; Shi, M.; Zhu, H. Cyclic codes from low differentially uniform functions. arXiv; 2022; arXiv: 2210.12092
41. Pommerening, K. Quadratic Equations in Finite Fields of Characteristic 2. February 2012. Available online: http://www.staff.uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf (accessed on 1 January 2024).
42. Canteaut, A.; Kölsch, L.; Li, C.; Li, C.; Li, K.; Qu, L.; Wiemer, F. Autocorrelations of Vectorial Boolean Functions. Cryptology ePrint Archive, Paper 2021/947. 2021; Available online: https://eprint.iacr.org/2021/947 (accessed on 1 January 2024).
43. Mesnager, S. Chapter 20–Linear codes from functions. Concise Encyclopedia of Coding Theory; Huffman, W.-C.; Kim, J.-L.; Solé, P. CRC Press/Taylor and Francis Group: London, UK, 2021; 94p.
44. Mesnager, S. Linear codes with few weights from weakly regular bent functions based on a generic construction. Cryptogr. Commun.; 2017; 9, pp. 71-84. [DOI: https://dx.doi.org/10.1007/s12095-016-0186-5]
45. Mesnager, S.; Özbudak, F.; Sınak, A. Linear codes from weakly regular plateaued functions and their secret sharing schemes. Des. Codes Cryptogr.; 2019; 87, pp. 463-480. [DOI: https://dx.doi.org/10.1007/s10623-018-0556-4]
46. Mesnager, S.; Qi, Y.; Ru, H.; Tang, C. Minimal linear codes from characteristic functions. IEEE Trans. Inf. Theory; 2020; 66, pp. 5404-5413. [DOI: https://dx.doi.org/10.1109/TIT.2020.2978387]
47. Mesnager, S.; Sınak, A. Several classes of minimal linear codes with few weights from weakly regular plateaued functions. IEEE Trans. Inf. Theory; 2020; 66, pp. 2296-2310. [DOI: https://dx.doi.org/10.1109/TIT.2019.2956130]
48. Mesnager, S.; Sınak, A.; Yayla, O. Minimal linear codes with few weights and their Secret Sharing. Int. J. Inf. Secur. Sci.; 2019; 8, pp. 44-52.
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.