Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to obtain a comprehensive understanding on bamboo as a curve-member manufacturing material by comparative analysis of how different treatment methods on bending properties improve the effect on bamboo strips. In order to achieve this purpose, bamboo strips were subjected to water boiling, 15% NaOH, and 25% NH3 impregnation; the impact of physical, mechanical and chemical properties were explored. The results revealed that: (1) Water boiling significantly affected crystallinity, cellulose, and lignin content, with a treatment duration of 10 h showing the most favorable results for flexibility and plasticity, greatly improving bending performance. (2) An amount of 15% NaOH treatment significantly increased bending MOE and plastic displacement by 73% and 122.7%. However, it led to a noticeable decrease in bending strength (MOR). A treatment above 8 h could cause irreversible damage to bamboo strips. (3) The improvement of 25% NH3 on bamboo bending ability was lower than water boiling. The effects of chemical composition were obvious in the initial five days and changed little after five days. Generally, water boiling for over 10 h is suitable for applications with significant bending requirements. While for maintaining bamboo color, original strength, and bending performance, 25% NH3 for five days was recommended, and 15% NaOH was not advised for improving bamboo bending performance and its applications.

Details

Title
The Influence of Treatment Methods on Bending Mechanical Properties of Bamboo Strips
Author
Cao, Shiyu 1 ; Ji, Jiagui 2 ; Yin, Haowei 1 ; Wang, Xuehua 1   VIAFID ORCID Logo 

 College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; [email protected] (S.C.); 
 Zhejiang Sanjian Industry & Trade Co., Ltd., Lishui 323800, China 
First page
406
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3001741305
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.