Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we address the integrated scheduling problem involving quay cranes and IGVs in automated terminals. We construct a mixed-integer planning model with the aim of minimizing the total energy consumption during quay crane and IGV operations, focusing on the loading-operation mode. The model considers the impact of the actual stowage of container ships on the loading order. We propose a dimension-by-dimension mutation sparrow search algorithm to optimize the model’s solution quality. Building upon the standard sparrow search algorithm, we incorporate cat mapping to enhance the diversity of the initial sparrow population. To improve global search in the early stage and local search in the later stage of the algorithm, we introduce an adaptive t-distribution mutation strategy. Finally, a total of 12 instances with container counts containing 30, 100, and 250 were designed for experiments to validate the effectiveness of the model and algorithm. The experiments demonstrate that, by appropriately increasing the number of quay cranes, configuring more than two or three IGVs can achieve optimal energy consumption for overall operations.

Details

Title
Energy-Aware Integrated Scheduling for Quay Crane and IGV in Automated Container Terminal
Author
Luo, Yuedi 1 ; Liang, Xiaolei 1 ; Zhang, Yu 2 ; Tang, Kexin 2 ; Li, Wenting 1 

 School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430070, China; [email protected] (Y.L.); [email protected] (W.L.) 
 School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China; [email protected] (Y.Z.); [email protected] (K.T.) 
First page
376
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003336959
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.