Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The simulation of the solidification of alloys (like steel or aluminium alloys), which is carried out by using the melt flow induced by a rotation magnetic field (RMF), needs the correct angular velocity vs. the radius function of the melt. Because it is impossible to directly obtain information about the melt flow from industrial casting, this information can only be obtained from well-monitored experiments using low-melting-point metals or alloys (e.g., Hg, Ga, GaIn, and GaInSn). In this work, we first summarized the measuring methods that are suitable for determining this function and analysed their advantages and disadvantages. All of them disturb, to some degree, the melt flow, except for the Pressure Compensation Method (PCM); therefore, this method was used in the experiments. Closed TEFLON crucibles with a 60 mm length and 12.5 mm radius and Ga75wt%In25wt% alloy was used. The angular velocity (ω) was calculated from the compensation pressure measured at r = 5, 7.5, 10, and 12.5 mm in the 0–90 mT range of magnetic induction, B. Based on the ω(B, r) dataset, a suitable ω(B, r) function was determined for the simulation.

Details

Title
The Angular Velocity as a Function of the Radius in Molten Ga75In25 Alloy Stirred Using a Rotation Magnetic Field
Author
Roósz, András 1 ; Arnold Rónaföldi 1 ; Svéda, Mária 1   VIAFID ORCID Logo  ; Veres, Zsolt 1 

 Institute of Physical Metallurgy, Metalforming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary[email protected] (M.S.); [email protected] (Z.V.); HUN-REN-ME Materials Science Research Group, 3515 Miskolc, Hungary 
First page
368
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003355069
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.