Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vanadium–titanium ore possesses significant mining and utilization value. The basicity of vanadium–titanium sinter has a direct impact on the formation, location, thickness, permeability, and heat exchange of the cohesive zone in the blast furnace. This paper investigated the influence of increasing the basicity of the sinter on the comprehensive burden’s cohesive dripping properties in the blast furnace, while keeping the final slag basicity constant. This study was conducted through cohesive dripping property experiments. The findings indicated that as the sinter basicity in the comprehensive burden structure increased and the corresponding increase in the proportion of pellets occurred, the softening performance of the comprehensive burden improved, the cohesive zone became thinner, the lower edge of the cohesive zone shifted upward, and the softening melting properties became better in general. With an increase in the sinter basicity, the dripping difference pressure of the comprehensive burden decreased, and the dripping rate firstly increased and then decreased. An increase in the sinter basicity of the comprehensive burden structure promoted V reduction, and the V element yield and Cr element yield of the sinter were both increased; the optimal sinter basicity was 2.5, and the corresponding pellet proportion was 42%.

Details

Title
Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden
Author
Ning, Zhe 1 ; Wang, Xiyu 1 ; Yang, Songtao 2 

 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China; [email protected] (Z.N.); [email protected] (X.W.) 
 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China; [email protected] (Z.N.); [email protected] (X.W.); Key Laboratory of Liaoning Province for Recycling Science of Metallurgical Resources, Northeastern University, Shenyang 110819, China 
First page
293
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003355984
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.