Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Additive manufacturing (AM) has revolutionized production across industries, yet challenges persist in achieving optimal part quality. This paper studies the enhancement of post-processing techniques to elevate the overall quality of AM-produced components. This study focuses on optimizing various post-processing methodologies to address prevalent issues such as surface roughness, dimensional accuracy, and material properties. Through an extensive review, this article identifies and evaluates a spectrum of post-processing methods, encompassing thermal, chemical, and mechanical treatments. Special attention is given to their effects on different types of additive manufacturing technologies, including selective laser sintering (SLS), fused deposition modeling (FDM), and stereolithography (SLA) and their dedicated raw materials. The findings highlight the significance of tailored post-processing approaches in mitigating inherent defects, optimizing surface finish, and enhancing mechanical properties. Additionally, this study proposes novel post-processing procedures to achieve superior quality while minimizing fabrication time and infrastructure and material costs. The integration of post-processing techniques such as cleaning, surface finishing, heat treatment, support structure removal, surface coating, electropolishing, ultrasonic finishing, and hot isostatic pressing (HIP), as steps directly within the additive manufacturing workflow can immensely contribute toward this direction. The outcomes displayed in this article not only make a valuable contribution to the progression of knowledge regarding post-processing methods but also offer practical implications for manufacturers and researchers who are interested in improving the quality standards of additive manufacturing processes.

Details

Title
Post-Production Finishing Processes Utilized in 3D Printing Technologies
Author
Kantaros, Antreas 1   VIAFID ORCID Logo  ; Ganetsos, Theodore 1   VIAFID ORCID Logo  ; Florian Ion Tiberiu Petrescu 2   VIAFID ORCID Logo  ; Ungureanu, Liviu Marian 2   VIAFID ORCID Logo  ; Iulian Sorin Munteanu 2 

 Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece; [email protected] 
 “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania; [email protected] (L.M.U.); [email protected] (I.S.M.) 
First page
595
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003393793
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.