Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We explore to what extent data-driven prediction models have skills in forecasting daily sea-surface temperature (SST), which are comparable to or perform better than current physics-based operational systems over long-range forecast horizons. Three hybrid deep learning-based models are developed within the South China Sea (SCS) basin by integrating deep neural networks (back propagation, long short-term memory, and gated recurrent unit) with traditional empirical orthogonal function analysis and empirical mode decomposition. Utilizing a 40-year (1982–2021) satellite-based daily SST time series on a 0.25° grid, we train these models on the first 32 years (1982–2013) of detrended SST anomaly (SSTA) data. Their predictive accuracies are then validated using data from 2014 and tested over the subsequent seven years (2015–2021). The models’ forecast skills are assessed using spatial anomaly correlation coefficient (ACC) and root-mean-square error (RMSE), with ACC proving to be a stricter metric. A forecast skill horizon, defined as the lead time before ACC drops below 0.6, is determined to be 50 days. The models are equally capable of achieving a basin-wide average ACC of ~0.62 and an RMSE of ~0.48 °C at this horizon, indicating a 36% improvement in RMSE over climatology. This implies that on average the forecast skill horizon for these models is beyond the available forecast length. Analysis of one model, the BP neural network, reveals a variable forecast skill horizon (5 to 50 days) for each individual day, showing that it can adapt to different time scales. This adaptability seems to be influenced by a number of mechanisms arising from the evident regional and global atmosphere–ocean coupling variations on time scales ranging from intraseasonal to decadal in the SSTA of the SCS basin.

Details

Title
SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea
Author
Zhang, Mengmeng; Han, Guijun  VIAFID ORCID Logo  ; Wu, Xiaobo; Li, Chaoliang; Shao, Qi  VIAFID ORCID Logo  ; Li, Wei  VIAFID ORCID Logo  ; Cao, Lige; Wang, Xuan; Dong, Wanqiu; Ji, Zenghua
First page
1034
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003414585
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.