Content area
Abstract
In the last decades, additive manufacturing -commonly referred to as 3D printing- has gained growing attention driven by increasing digitalization in industry and the biomedical sector. The expression additive manufacturing is used to describe a variety of manufacturing technologies that produce construction parts in a layer-by-layer approach based on CAD files. In comparison to traditional subtractive manufacturing processes, additive manufacturing allows the cheap production of highly complex, individualized specimens in small product series in a short time. These advantages are particularly attractive for the biomedical sector to produce surgical models and patient-specific implants.
In this context, the powder bed fusion laser beam melting process of polymers (PBF-LB/P) is very capable to produce geometrically complex and porous specimens for their use as bone implants. However, the choice of suitable powder materials is very limited up to now. The available materials can be divided into two categories of unfilled polymeric powders, which are almost exclusively based on polyamide 12, and a few filled composite powders. These composite powders are physical mixtures on the micrometer scale of polyamide 12 and additives such as carbon fibers or glass beads. This limited material selection results from the high material requirements imposed by the powder bed fusion process (PBF-LB/P). A suitable powder material needs to provide a wide thermal process window, a well-developed adsorption behavior in the wavelength of the CO2 laser, and high powder flowability.
In this PhD thesis, a colloid-based bottom-up process chain is presented to produce tailored supraparticles for the powder fusion process (PBF-LB/P). In a first step, polymeric and additive primary particle dispersions are prepared. These dispersions are then spray dried either as a pure polymeric dispersion to produce polymer supraparticles or as a dispersion mixture to produce composite supraparticles. The dispersion droplet serves as confinement for the self-assembly of the primary particles. The final supraparticle design can be precisely adjusted via the spray drying process conditions and the primary particle dispersions.
In the first part of the thesis, a system of polymethyl methacrylate (PMMA) and silica (SiO2) is investigated with a special focus on supraparticle formation. The produced supraparticles could be of interest for dental applications. The first aim was to identify suitable spray drying process parameters to obtain spherical supraparticles with good flowability. Then, the powder flowability of the supraparticles is further improved by adjusting the supraparticle roughness.
Subsequently, the structure formation of PMMA-SiO2 composite supraparticles is studied, based on different dispersion mass mixing ratios and primary particle diameter ratios. Furthermore, the drug release from PMMA composite supraparticles is investigated, comprising mesoporous drug-loaded silica (MSiO2) primary particles. Finally, the tailored PMMA and PMMA-SiO2 supraparticles with optimized product properties are applied in the powder bed fusion process (PBF-LB/P).
In the second part of the thesis, a system consisting of polylactide (PLA) and calcium-containing inorganic primary particles is investigated for additively manufactured bone implants. In a first step, PLA primary particles are synthesized via the miniemulsion solvent evaporation process, while binary calcium-silica (Ca-SiO2) and nanohydroxyapatite (HAP) primary particles are produced via sol-gel processes. Subsequently, these colloidal dispersions are spray dried to form tailored supraparticles. The thermal properties and the flowability of the powder material are characterized in detail.





